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PREFACE

The Occupational Safety and Health Act of 1970 emphasizes the need 

for standards to protect the health and safety of workers exposed to an 

ever-increasing number of potential hazards at their workplace. The 

National Institute for Occupational Safety and Health has projected a 

formal system of research, with priorities determined on the basis of 

specified indices, to provide relevant data from which valid criteria for 

effective standards can be derived. Recommended standards for occupational 

exposure, which are the result of this work, are based on the health 

effects of exposure. The Secretary of Labor will weigh these recommen

dations along with other considerations such as feasibility and means of 

implementation in developing regulatory standards.

It is intended to present successive reports as research and epide

miologic studies are completed and as sampling and analytical methods are 

developed. Criteria and standards will be reviewed periodically to ensure 

continuing protection of the worker.

I am pleased to acknowledge the contributions to this report on 

phosgene by members of my staff and the valuable constructive comments by 

the Review Consultants on Phosgene, by the ad hoc committees of the 

American Academy of Occupational Medicine and the American Academy of 

Industrial Hygiene, and by Robert B. O'Connor, M.D., NIOSH consultant in 

occupational medicine. The Department of the Army, Edgewood Arsenal, 

Aberdeen Proving Ground, Maryland, and the Ministry of Defence, Chemical 

Defence Establishment, Porton, England, have been very helpful in



declassifying documents so they could be reviewed for use in this report. 

The NIOSH recommendations for standards are not necessarily a consensus of 

all the consultants and professional societies that reviewed this criteria 

document on phosgene. Lists of the NIOSH Review Committee members and of 

the Review Consultants appear on the following pages.

John F. Finklea, M.D.
Director, National Institute for 
Occupational Safety and Health



The Division of Criteria Documentation and Standards 

Development, National Institute for Occupational 

Safety and Health, had primary responsibility for 

development of the criteria and recommended standard 

for phosgene. The University of Washington, School 

of Public Health and Community Medicine, developed 

the basic information for consideration by NIOSH 

staff and consultants under contract No. HSM-99-73- 

36. Jon R. May, Ph.D., had NIOSH program 
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I. RECOMMENDATIONS FOR A PHOSGENE STANDARD

The National Institute for Occupational Safety and Health (NIOSH) 

recommends that worker exposure to phosgene in the workplace be controlled 

by requiring compliance with the following sections. The standard is 

designed to protect the health and safety of workers for up to a 10-hour 

workday, 40-hour workweek over a working lifetime. Compliance with the 

standard should therefore prevent adverse effects of phosgene on the health 

and safety of workers. The standard is measurable by techniques that are 

valid, reproducible, and available to industry and government agencies. 

Sufficient technology exists to permit compliance with the recommended 

standard. The standard will be subject to review and revision as 

necessary.

"Phosgene" is defined as gaseous or liquified phosgene. Synonyms for 

phosgene include carbonyl chloride, carbon oxychloride, chlorofomyl 

chloride, and CG (designation used by military agencies). "Occupational 

exposure to phosgene" is defined as exposure above half the recommended 

time-weighted average (TWA) environmental limit. Exposure at lower 

concentrations will not require adherence to the following Sections except 

for Sections 3, 4(a), 4(b), 4(c)(3), 4(c)(5), 4(c)(6), 5, 6, 7, and 8(a). 

"Overexposure" is defined as known or suspected exposure above either the 

TWA or ceiling concentrations, or any exposure which leads to development 

of pulmonary symptoms.
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Section 1 - Environmental (Workplace Air)

(a) Concentration

Occupational exposure to phosgene shall be controlled so that no 

worker is exposed to phosgene at a concentration greater than one-tenth 

part phosgene per million parts of air (0.1 ppm) determined as a TWA 

concentration for up to a 10-hour workday, 40-hour workweek, or to more 

than two-tenths part phosgene per million parts of air (0.2 ppm) as a 

ceiling concentration for any 15-minute period.

(b) Sampling and Analysis

Procedures for sampling, calibration of equipment, and analysis of 

environmental samples shall be as provided in Appendices I and II, or by 

any method shown to be equivalent in precision, accuracy, and sensitivity 

to the methods specified.

Section 2 - Medical

(a) Comprehensive preplacement and annual medical examinations 

shall be made available to all workers to be occupationally exposed to 

phosgene unless a different frequency is indicated by professional medical 

judgment based on such factors as emergencies, variations in work periods, 

and preexisting health status of individual workers.

(b) These examinations shall include, but shall not be limited to:

(1) Comprehensive or interim medical and work histories.

(2) A comprehensive medical examination giving particular 

attention to pulmonary function. Preplacement and follow-up pulmonary 

function tests shall be performed and shall include the forced vital
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capacity (FVC), the one-second forced expiratory volume (FEV 1), and the 

forced midexpiratory flow (FEF 25-75); a preplacement chest X-ray shall be 

obtained. The possibility of increased risk for workers with preexisting 

cardiovascular or pulmonary diseases should be considered and, when 

appropriate, the workers should be given counseling on the possibility of 

increased risk. Return to work after an absence for sickness due to 

phosgene overexposure shall require medical approval.

(3) A judgment of the worker's ability to use a negative or 

positive pressure respirator.

(c) Proper medical management shall be provided for workers 

overexposed to phosgene.

In case of known or suspected overexposure to phosgene, first aid 

measures shall be taken immediately, followed by prompt medical evaluation 

and care. Overexposed persons should not be permitted any unnecessary 

physical exertion. They should be carried to a vehicle for subsequent 

transportation to receive medical assistance. Pressurized oxygen and 

attendants trained in its use shall be available in the event they are 

needed for persons in respiratory distress. In case of skin or eye contact 

with liquid phosgene, contaminated clothing shall be removed immediately 

and the exposed body areas flushed with copious amounts of water. The 

plant physician or medical consultant shall be informed of any suspected 

overexposure to phosgene and shall determine the need for X-ray or 

pulmonary function studies or hospitalization. Because of the often- 

delayed onset of symptoms following overexposure to phosgene, surveillance 

or monitoring of the patient by a physician or by trained paramedical 

personnel is required for the 24-hour period following overexposure. A



posterior-anterior chest film should be taken in each instance of known or 

suspected overexposure to phosgene for comparison with preplacement chest 

films. Pulmonary function tests may be useful during convalescence.

(d) Medical records shall be maintained for all workers 

occupationally exposed to phosgene. All pertinent medical records with 

supporting documents, including chest films for at least the 5 years 

preceding termination of employment and the original preplacement chest 

films, shall be maintained for at least 5 years after the termination of 

the individual’s employment. The designated medical representatives of the 

Secretary of Health, Education, and Welfare, of the Secretary of Labor, of 

the employer, and of the employee or former employee shall have access to 

these medical records.

Section 3 - Labeling (Posting)

All containers of phosgene and all areas where phosgene is stored, 

handled, used, or formed shall be labeled and placarded in accordance with 

An Identification System for Occupationally Hazardous Materials, a 

recommended standard published by NIOSH, and in accordance with the 

following subsections.

(a) Containers of phosgene shall bear the following label in 

addition to, or in combination with, labels required by other statutes, 

regulations, or ordinances:
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CONTAINS PHOSGENE

EXTREME HEALTH HAZARD

Harmful or fatal if inhaled, may cause delayed lung injury.
Do not breathe gas.
Do not get liquid in eyes, on skin, or on clothing.
Use only with adequate ventilation and/or in closed systems.
Open containers with care.
Have respiratory protection available for emergency.

FIRST AID CALL A PHYSICIAN IMMEDIATELY

In case of inhalation, remove victim to uncontaminated 
atmosphere.
If breathing stops, administer artificial respiration.
Do not allow victim to walk or exercise.
In case of liquid contact, immediately flush skin or eyes 
with water.
Remove contaminated clothing without delay and dispose of 
liquid properly.

(b) The following warning sign shall be affixed in a readily 

visible location at or near entrances to areas in which phosgene is stored, 

handled, used, or formed:

CONTAINS PHOSGENE

EXTREME HEALTH HAZARD

Harmful or fatal if inhaled, may cause delayed lung injury.
In emergency, enter only if wearing respiratory, eye, and 
skin protection.
Phosgene respiratory protection located at (specific locations 
to be supplied by employer).
Unauthorized persons keep out.

This sign shall be printed both in English and in the predominant 

language of non-English-speaking workers, if any. All employees shall be 

trained and informed of the hazardous area with special instruction given 

to illiterate workers.

(c) All systems, piping, and associated equipment containing
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phosgene shall be plainly marked for positive identification in accordance 

with American National Standard A13.1-1956. Shut-off valves shall be 

conspicuously labeled. Phosgene containers in use shall be plainly marked 

"In Use" to distinguish them from those not in use.

Section 4 - Personal Protective Equipment and Clothing

Engineering controls shall be used to maintain phosgene 

concentrations below the prescribed limits. When necessary, this shall be 

supplemented by the use of personal protective equipment. Requirements for 

personal protective equipment shall be in accordance with provisions of 29 

CFR 1910 (Federal Register 39:23670, June 27, 1974).

(a) Skin Protection

(1) In addition to the respiratory protection specified in 

Table 1-1, personnel performing emergency operations involving exposure to 

liquid phosgene shall wear one-piece suits, impervious to phosgene and 

tight at the ankles, wrists, and around the neck and face. The suits shall 

be ventilated with supplied air, preferably cooled, or time in the work 

area shall be limited with due consideration to the heat stress factors 

involved. Impervious gloves and boots shall also be worn. Such protective 

clothing shall be available at a convenient location outside the 

contaminated area.

(2) The employer shall insure a sufficient supply and 

adequate maintenance of protective clothing.

(b) Eye Protection

Personnel handling liquid phosgene in situations where eye contact 

can occur shall have eye protection afforded by full-face respiratory
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protection as specified in Table 1-1, since concentrations of phosgene 

sufficient to cause eye damage are also likely to cause respiratory tract 

damage.

(c) Respiratory Protection

(1) Compliance with the exposure limits may be achieved by 

the use of respirators only:

(A) during the time period necessary to install and 

test the controls required by Section 6(b) of this chapter;

(B) for nonroutine operations such as a brief 

exposure in excess of the TWA or ceiling concentration exposure limit as a 

result of maintenance or repair activities; or

(C) in emergencies when air concentrations of 

phosgene may exceed the TWA exposure limit.

(2) When a respirator is permitted by paragraph (1) of this 

subsection, it shall be selected from among those jointly approved by the 

Bureau of Mines, US Department of the Interior, and by the National 

Institute for Occupational Safety and Health, US Department of Health, 

Education, and Welfare, under the provisions of 30 CFR 11. The employer 

shall provide the respirator required and shall ensure its use. A 

respiratory protection program meeting the requirements of 29 CFR 1910.134, 

as amended, shall be established and enforced by the employer. Only 

appropriate respirators as described in Table 1-1 shall be used.
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TABLE 1-1 

RESPIRATOR SELECTION GUIDE

Air Concentrations Respirator Type*

Less than or equal to 

1 ppm

Less than or equal to 

2ppm

Greater than 2 ppm or 

emergency situations

(1) Any supplied-air respirator; or

(2) Any self-contained breathing 

apparatus.

(1) Any supplied-air respirator with 

a full facepiece, helmet, or hood; or

(2) Any self-contained breathing 

apparatus with a full facepiece.

(1) Self-contained breathing apparatus 

with a full facepiece operated in 

pressure-demand or other positive 

pressure mode; or

(2) A combination respirator which 

includes a Type C supplied-air 

respirator with a full facepiece 

operated in pressure-demand or 

other positive pressure or continuous 

flow mode and an auxiliary self- 

contained breathing apparatus 

operated in pressure-demand or other 

positive pressure mode.
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TABLE 1-1 (CONTINUED) 

RESPIRATOR SELECTION GUIDE

Air Concentrations Respirator Type*

Firefighting Self-contained breathing apparatus 

with a full facepiece operated in 

pressure-demand or other positive 

pressure mode.

Evacuation or escape (1) Any gas mask providing protection 

against phosgene; or

(2) Any escape self-contained breathing 

apparatus with full facepiece.

* Approved by the Bureau of Mines and the National Institute for Occupational 
Safety and Health

(3) Each work area where there is potential for 

occupational exposure to phosgene shall have at least 2 sets of self- 

contained breathing apparatus readily available in nearby locations which 

do not require entry into, or passage through, a contaminated area for 

access.

(4) Respirators specified for use in higher concentrations 

of phosgene may be used in atmospheres of lower concentrations.

(5) Employees shall be trained and drilled in the use of
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respirators assigned to them and in testing for leakage.

(6) Canisters shall be discarded and replaced with fresh 

canisters after use. Unused canisters shall be discarded and replaced when 

the seal is broken or when the shelf life, as recommended by the 

manufacturer, is exceeded.

Section 5 - Informing Employees of Hazards from Phosgene

At the beginning of employment, workers who will work in areas 

required to be posted in accordance with Section 3(b) shall be informed of 

the hazards from phosgene, symptoms of overexposure, emergency procedures, 

and precautions to ensure safe use and to minimize exposure. First aid 

procedures shall be included. This information shall be posted in the work 

place and kept on file, readily accessible to the worker.

A continuing educational program shall be instituted for workers 

whose jobs may involve occupational exposure to phosgene. This is to 

ensure that all such workers have current knowledge of job hazards, 

maintenance procedures, and clean-up methods, and that they know how to use 

respiratory protective equipment and protective clothing. Workers should 

be advised that the detection of the odor of phosgene at any time indicates 

the need for immediate corrective procedures or withdrawal from the area. 

First-line supervisors shall be thoroughly informed of these hazards and 

procedures and should participate in the education of workers.

In addition, members of emergency teams and employees who work in 

areas adjacent to phosgene systems or containers, where a potential for 

emergencies exists, shall participate in periodic drills, simulating 

emergencies appropriate to the work situation. Drills shall be held at
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intervals not exceeding 6 months. Drills should cover, but should not be 

limited to:

Evacuation procedures.
Handling of spills and leaks, including decontamination. 
Location and use of emergency firefighting equipment, and 
handling of phosgene and chlorinated hydrocarbon systems 
and/or containers in case of fire.
First aid and rescue procedures, including prearranged 
procedures for obtaining emergency medical care.
Location, use, and care of protective clothing and 
respiratory protective equipment.
Location of shut-off valves or switches.
Location, purpose, and use of safety showers and eyewash 
fountains.
Operating procedures including communication procedures.
Entry procedures for confined spaces.

Deficiencies noted during drills shall be included in the continuing 

educational program, together with the required remedial actions. Records 

of drills and training conducted shall be kept for one year and made 

available for inspection by authorized personnel as required.

Information as required shall be recorded on the US Department of 

Labor Form OSHA-20, "Material Safety Data Sheet," shown in Appendix IV or 

on a similar form approved by the Occupational Safety and Health 

Administration, US Department of Labor.

Section 6 - Work Practices

(a) Emergency Procedures

For all work areas in which there is a potential for emergencies, 

procedures specified below, as well as any other procedures appropriate for 

a specific operation or process, shall be formulated in advance and 

employees shall be instructed and drilled in their implementation.
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(1) Procedures shall Include prearranged plans for:

(A) immediate evacuation of overexposed workers;

(B) transportation of overexposed workers;

(C) any necessary calls for assistance, including 

alerting medical facilities of the impending arrival of overexposed 

workers, and calls to suppliers or manufacturers of phosgene for any 

necessary technical advice;

(D) designation of medical receiving facilities and

names of physicians trained in phosgene emergency procedures;

(E) reentry for maintenance or clean-up purposes of 

areas where phosgene leaks or spills have occurred.

(2) Approved eye, skin, and respiratory protection as 

specified in Section 4 shall be used by personnel essential to emergency 

operations.

(3) Nonessential employees shall be evacuated from

hazardous areas during emergencies. Perimeters of these areas shall be 

delineated, posted, and secured. The employees in adjacent areas shall be 

trained in evacuation procedures in the event that their work areas become 

involved.

(4) Personnel who cannot be evacuated shall keep upwind of

phosgene spills or leaks, if possible. Only personnel trained in the 

emergency procedures and protected against the attendant hazards shall shut 

off sources of phosgene, clean up spills, and control and repair leaks.

(5) In case of fire, phosgene containers shall be removed 

to a safe place, or cooled with water if leaks do not exist. Efforts shall 

be made to prevent phosgene cylinders from reaching temperatures above 50 C 
(122 F).
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(6) Water shall not be used on phosgene leaks because

accelerated corrosion of metal by phosgene in the presence of moisture will 

quickly make the leak worse.

(7) If possible, phosgene emissions shall be directed to an

alkali scrubber or to process (ie, routed by means of appropriate valving 

within a closed system to a secondary holding vessel or neutralization 

system).

(8) Containers leaking liquid phosgene should he positioned 

so that gaseous phosgene is discharged through the leak until control is 

effected.

(9) If local emergency teams cannot cope with the

emergency, assistance shall be requested from the supplier or the nearest 

phosgene-manufacturing facility. Telephone numbers of emergency help shall 

be prominently posted.

(10) Phosgene in contact with skin or eyes must be removed

by immediate flushing with copious quantities of water, and immediate

medical attention must be obtained. Contaminated clothing must be removed 

immediately. If the worker has inhaled phosgene, remove him to an 

uncontaminated atmosphere, give artificial respiration if required, and get 

immediate medical attention in accordance with Section 6(a)(1). Do not 

allow the victim to walk or exercise in any manner. Keep the victim quiet 

and warm.

(b) Control of Airborne Phosgene

Engineering controls shall be used to maintain phosgene

concentrations at or below the prescribed limits. The use of completely

enclosed processes is the preferred method of control for phosgene. Local
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exhaust ventilation may also be effective, used alone or in combination 

with process enclosure. Ventilation systems shall be designed to prevent 

the accumulation or recirculation of phosgene in the workroom, to maintain 

phosgene concentrations within the limits of the recommended standard, and 

to remove phosgene from the breathing zones of workmen. Exhaust

ventilation systems shall discharge to the outside air through a sorption 

or a decomposition system (eg, scrubbers containing an alkaline scrubbing 

medium, such as 5% sodium hydroxide solution). Ventilation systems shall 

be subject to regular preventive maintenance and cleaning to ensure 

effectiveness, which shall be verified by periodic air-flow measurements. 

Tempered makeup air shall be provided to workrooms in which exhaust 

ventilation is operating.

(c) Storage

(1) Phosgene shall be stored in unoccupied, adequately

ventilated, cool, and dry rooms, or outdoors shielded from the direct rays 

of the sun and protected from moisture.

(2) Phosgene storage rooms shall be provided with an

inspection window to permit viewing of the interior without entry.

(3) Phosgene storage areas shall be completely isolated

from work areas. If separated from a work area by a common wall, all 

holes, ducts, doors, and passthroughs which could allow phosgene to enter 

other parts of the plant shall be secured and sealed. Central cooling and 

heating ducts shall not extend to phosgene storage enclosures.

(4) Ventilation switches and emergency respiratory 

protection shall be located outside storage areas in readily accessible 

locations which will be free of phosgene in an emergency. Fan switches
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shall be equipped with indicator lights.

(5) Phosgene containers shall be secured to prevent 

falling, upsetting, or rolling, and shall be protected from mechanical 

damage, heat, moisture, and corrosion.

(6) Containers of phosgene should be used on a first-in, 

first-out (FIFO) basis. Storage of phosgene shall be limited to the 

minimum necessary for the operation.

(7) Used containers should not be stored with full 

containers. Full containers shall be so marked, and containers in use 

shall be plainly marked "In Use" to differentiate from those not in use.

(8) Other materials should not be stored with phosgene.

(9) Phosgene containers shall be frequently inspected for 

leaks and deterioration. If the hydrostatic test date stamped on cylinders 

is older than 5 years, the cylinder shall be returned to the vendor, or 

arrangements shall be made to have the necessary test performed.

(d) Handling and General Work Practices

(1) Written operating instructions and emergency medical 

procedures shall be formulated and posted where phosgene is handled or 

used.

(2) Prompt medical attention shall be obtained if there is 

known or suspected overexposure to phosgene, whether or not symptoms are 

present.

(3) Returnable phosgene containers shall not be washed out

with water.

(4) Safety valves and vents for phosgene equipment shall 

discharge through absorbers or neutralizers (decomposition system).
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(5) Phosgene containers and systems shall be inspected

daily for leaks. All phosgene equipment including valves, fittings, and 

connections shall be checked for tightness and good working order. All 

newly made connections shall be checked for leaks immediately after 

phosgene is admitted. Needed repairs and adjustments shall be made 

promptly.

(6) Appropriate precautions shall be taken to keep phosgene 

and phosgene equipment free of moisture. Piping, valves, and containers 

shall be capped or closed when not in use to keep atmospheric moisture out 

of the system.

(7) Transportation and use of phosgene shall comply with 

all applicable federal, state, and local regulations.

(8) When phosgene containers are being moved, or when they

are not in use and are disconnected, valve protection covers shall be in 

place. Containers shall be moved only with the proper equipment and shall 

be secured to prevent dropping or loss of control while moving. Slings or 

magnetic devices shall not be modified, altered, or repaired except as

normally intended by the supplier.

(9) Valves and pumps shall be readily accessible and should

not be located in pits and congested areas.

(10) Discharge rates of containers of phosgene may be

increased by use of warm air or warm water. Steam, boiling water, or 

direct flame shall not be used. Cylinder temperatures shall not exceed 50 

C (122 F). V

(11) Containers discharging liquid phosgene shall not be

connected to manifolds. Phosgene delivery tubes and pipes from other than
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high- pressure containers should not be immersed in other liquids without 

interposing a check valve or a trap to prevent back siphonage.

(12) The amount of phosgene used from a container shall be 

determined by a positive method (eg, weighing the preweighed container).

(13) New gaskets shall be used each time phosgene system 

connections are made.

(14) Welding or burning on tanks or equipment which have 

contained phosgene shall take place only after such tanks or equipment have 

been thoroughly purged with a dry inert gas, vented to a sorption or 

decomposition system. Steam or water shall not be introduced to the tanks, 

system, or equipment. Phosgene equipment, containers, or piping shall not 

be repaired while in service.

(15) Before phosgene is admitted to a system, the system 

shall be thoroughly cleaned, dried, and tested, using previously formulated 

procedures.

(16) Personnel shall not work alone when phosgene is first 

admitted to a system or while repairing leaks.

(17) Containers and systems shall be handled and opened with

care. Approved eye, skin, and respiratory protection shall be worn while

opening, connecting, and disconnecting phosgene containers and systems. 

When opening containers or systems, adequate ventilation shall be available 

to prevent inadvertent exposure to phosgene.

(18) Any odor of phosgene shall be reported to a responsible

authority or an alarm sounded as soon as possible after the area has been

vacated.

17



(e) Work Areas

(1) Where phosgene is stored, piped, handled, or used, 

eyewash fountains and safety showers shall be located immediately outside 

the area. They shall be readily accessible and shall be inspected

frequently and kept in good working order.

(2) Enclosed phosgene work areas shall be equipped with at 

least 2 exits, remote from each other, to allow escape into uncontaminated 

areas in case of emergency. Doors shall open outward.

(3) Unauthorized personnel shall be prohibited from 

entering areas where phosgene is handled or used.

(4) Wherever possible, phosgene installations shall be

outdoors. If it is necessary that such installations be indoors, workers 

should operate from a pressurized control room supplied with fresh air from 

an area remote from any possible source of phosgene contamination.

(5) For reentry purposes, at least 2 sets of self-contained 

breathing apparatus as specified in Table 1-1 shall be located outside each 

work area where phosgene is handled, used, stored, or formed. In case of 

emergency, they shall be accessible without entry into contaminated areas. 

Employees shall be trained and drilled in their use.

(6) Phosgene shut-off valves shall be conspicuously marked

and employees shall be familiarized with their use. Access to shut-off 

valves shall be unobstructed. Work areas shall be kept clean and orderly.

(f) Waste Disposal

(1) Disposal of waste phosgene shall conform to all 

applicable local, state, and federal regulations.

(2) Phosgene shall not be allowed to enter drains or sewers.
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(3) Appreciable discharges of phosgene shall be passed 

through an adequate decomposition system, such as a scrubbing tower 

utilizing sodium hydroxide or ammonium hydroxide, or through a sorbent 

system.

(4) Solid sorbents should be chosen so that desorption of 

phosgene is unlikely. Heating of the solid sorbent should be avoided.

(g) Confined Spaces

(1) Entry into confined spaces such as tanks, pits, tank 

cars, barges, process vessels, and tunnels shall be controlled by a permit 

system. Permits shall be signed by an authorized employer representative 

certifying that preparation of the confined space, precautionary measures, 

and personal protective equipment are adequate, and that precautions have 

been taken to ensure that prescribed procedures will be followed.

(2) Confined spaces which have contained phosgene shall be 

inspected and tested for oxygen deficiency, phosgene, and other 

contaminants and shall be thoroughly ventilated, cleaned, neutralized, and 

washed, as necessary, prior to entry.

(3) Inadvertent entry of phosgene into the confined space 

while work is in progress shall be prevented by disconnecting and blanking 

of phosgene supply lines.

(4) Confined spaces shall be ventilated while work is in 

progress to keep the concentration of any phosgene present below the 

standard and to prevent oxygen deficiency.

(5) Individuals entering confined spaces where they may be 

exposed to phosgene shall be equipped with adequate respirators and 

suitable harnesses with lifelines tended by another worker outside the
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space who shall also be equipped with the necessary protective equipment.

(h) Enclosed Spaces

Enclosed spaces (rooms, buildings, etc) which ordinarily are safe to 

enter but which, due to the failure of a system inside, could contain 

hazardous concentrations of phosgene should have a continuous automatic 

monitor (see Appendix III) set to sound an alarm which is audible inside 

and outside the enclosed space if phosgene concentrations exceed the 

ceiling concentration limit. A warning light is recommended as a 

substitute for a bell in noisy areas. If such areas are not monitored in 

this way, they shall be entered only if the worker is under observation by

a coworker and if the worker has in his possession a respirator suitable

for escape.

(i) Miscellaneous

Unless the potential for inadvertent phosgene generation is

anticipated and engineering controls are implemented, chlorinated 

hydrocarbons shall not be exposed to high temperatures or ultraviolet 

radiation.

Section 7 - Sanitation Practices

(a) Plant sanitation shall meet the requirements of 29 CFR 

1910.141.

(b) Escape routes near phosgene control equipment shall be kept

clear, reflecting general good housekeeping practices.

(c) Appropriate locker rooms shall be available for changing into 

required protective clothing in accordance with 29 CFR 1910.141(e). 

Clothing contaminated with liquid phosgene shall be immediately removed and
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placed in a closed container in a well-ventilated area for later disposal 

or decontamination.

(d) Food should not be stored, prepared, dispensed, or eaten in

phosgene work areas.

Section 8 - Monitoring and Recordkeeping Requirements

(a) Workroom areas where it has been determined, on the basis of 

an industrial hygiene survey or the judgment of a compliance officer, that 

environmental levels of phosgene are less than half of the TWA limit should 

not be considered to have phosgene exposure. Records of these surveys, 

including the basis for concluding that air levels of phosgene are below 

half of the TWA limit, shall be maintained until a new survey is conducted.

(b) Area Monitoring

Continuous automatic monitoring is recommended in any work area where 

an initial industrial hygiene survey indicates that a potential phosgene 

exposure exists. Such monitoring devices (see Appendix III) should have an 

audible or a visible alarm (light) which is triggered whenever the ceiling 

concentration limit is exceeded.

(c) Personal Monitoring

(1) Initial Monitoring

Within 6 months of the promulgation of this standard, each

employer who has a place of employment in which phosgene is stored, 

handled, used, or formed shall design and implement a monitoring program 

which shall identify and measure or permit calculation of the exposure of 

all employees exposed to phosgene.
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(2) Normal Monitoring

(A) Routine monitoring of employee exposure shall be 

conducted at 3-month intervals unless otherwise indicated by a professional 

industrial hyglenist and whenever introduction of a production, process, or 

control change indicates a need for réévaluation.

(B) If an employee monitoring program measurement 

reveals that an employee is exposed in excess of the recommended 

environmental limits, the exposure of that employee shall be measured at 

least once every 2 weeks, control measures required by Section 6(b) shall 

be implemented, and the employee shall be notified. When two consecutive 

biweekly determinations reveal that employee exposure no longer exceeds 

either of the recommended environmental limits, routine monitoring may be 

resumed.

(3) Exposure Measurement

In all personal monitoring, samples representative of the 

exposure in the breathing zone of the employee shall be collected.

Procedures for sampling, calibration of equipment, and analysis of phosgene 

samples shall be as provided in Appendices I and II, or by any method shown

to be equivalent in precision, accuracy, and sensitivity to the methods

specified.

An adequate number of samples shall be collected to permit

construction of a TWA and peak exposure value for every operation or 

process. Variations in work and production schedules shall be considered 

in deciding when samples are to be collected. The minimum number of

representative TWA determinations for an operation or process shall be 

based on the number of workers exposed as provided in Table 1-2, or as

otherwise indicated by a professional industrial hygienist.
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TABLE 1-2

SAMPLING SCHEDULE

Number of Employees Exposed Number of TWA Determinations

1 - 20 50% of the total

number of workers

21 - 100 10 plus 25% of the

excess over 20 workers

Over 100 30 plus 5% of the excess

over 100 workers

(d) Recordkeeping

Employers shall maintain records of any accidental phosgene release 

requiring evacuation, and results of all exposure measurements,

environmental surveys, and medical examinations performed as required by 

Section 2 of this chapter. Such records shall indicate the type of 

personal protective devices, if any, in use at the time of sampling. 

Records of environmental monitoring shall be maintained and shall be

available to the authorized representatives of the Secretary of Health,

Education, and Welfare, and of the Secretary of Labor. Each employee shall

be able to obtain information on his own environmental exposure. Such
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records shall be maintained for at least 5 years after the individual's 

employment is terminated.
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II. INTRODUCTION

This report presents the criteria and the recommended standard based 

thereon which were prepared to meet the need for preventing occupational 

diseases arising from exposure to phosgene. The criteria document fulfills 

the responsibility of the Secretary of Health, Education, and Welfare, 

under Section 20(a)(3) of the Occupational Safety and Health Act of 1970 to 

"...develop criteria dealing with toxic materials and harmful physical 

agents and substances which will describe...exposure levels at which no 

employee will suffer impaired health or functional capacities or diminished 

life expectancy as a result of his work experience...."

The National Institute for Occupational Safety and Health (NIOSH), 

after a review of data and consultation with others, formalized a system 

for the development of criteria upon which standards can be established to 

protect the health of workers from exposure to hazardous chemical and 

physical agents. It should be pointed out that any criteria and 

recommended standard should enable management and labor to develop better 

engineering controls resulting in more healthful work environments. Simply 

complying with the recommended standard should not be the final goal.

These criteria for a standard for phosgene are part of a continuing 

series of criteria developed by NIOSH. The proposed standard applies to 

the processing, manufacture, use of, or other occupational exposure to 

phosgene as applicable under the Occupational Safety and Health Act of 

1970. The standard was not designed for the population-at-large, and any 

extrapolation beyond occupational exposures is not warranted. It is 

intended to (1) protect against injury from phosgene, (2) be measurable by 

techniques that are valid, reproducible, and available to industry and
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official agencies, and (3) be attainable with existing technology.

The development of the recommended standard for occupational exposure 

to phosgene has revealed deficiencies in the data base in the following 

areas:

(1) epidemiologic studies of workers exposed to phosgene

for extended periods;

(2) chronic animal exposure studies at low levels of

phosgene;

(3) improvement of the sensitivity of sampling and

analytical methods for personal monitoring;

(4) testing of automatic, continuous monitoring systems and

associated alarms.

These gaps in our knowledge of phosgene should be filled.
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III. BIOLOGIC EFFECTS OF EXPOSURE

Extent of Exposure

Phosgene is a colorless gas at normal temperatures and pressure. 

When liquified under pressure or refrigeration, it is a colorless-to-light 

yellow liquid. [1] In low concentrations, its odor has been variously 

described as resembling that of musty hay [2] or green corn. [3] Phosgene 

is easily manufactured by passing chlorine and excess carbon monoxide over 

activated carbon. [3] Shortages of chlorine and attendant high prices have 

somewhat restricted the manufacture of phosgene in recent years. [4] Some 

phosgene can also be produced by the decomposition of chlorinated 

hydrocarbons by heat or by ultraviolet radiation. [5,6,7,8,9] Relevant 

properties of phosgene are presented in Table XIII-1. [1,2,10,11,12]

Phosgene was first used as a chemical warfare agent during World War 

I. Its use in industry is a relatively recent development. [3] 

Accordingly, much of the literature on phosgene is concerned with its 

military applications. Phosgene production in the United States in 1957, 

the first year the US Tariff Commission started reporting phosgene output, 

was only 5 million pounds. [3] In 1967, production reached 350 million 

pounds, [3] in 1971, 530 million pounds, [13] while in 1972, it had

increased to 657 million pounds. [14] In contrast to these figures, sales 

in 1971 were only 11,215,000 pounds [13] and 11,678,000 pounds in 1972.

[14] The apparent discrepancy between production and sales is due to the 

fact that the major portion of the phosgene manufactured is for "captive" 

use (use by the phosgene manufacturer), while the relatively small 

remainder is sold. [3] In 1974, phosgene was being produced in 18 plants
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and capacity was on the increase. [4] It has been estimated that demand 

will be 1,630 million pounds in 1978. [4]

The relatively recent revitalization of the phosgene industry and the 

rapidly increasing demand are due largely to the use of phosgene in the 

synthesis of isocyanates, which are starting materials for polyurethane 

resins. Production of isocyanates accounted for about 75% of all phosgene 

produced in 1967. [3] In 1974, the uses of phosgene were distributed as

follows: production of toluene diisocyanate, 62%; other polymeric

isocyanates, 23%; polycarbonates, 6%; pesticides, carbonates, and 

"specialties," 9%. [4]

Some occupations with potential exposure to phosgene are listed in 

Table XIII-2. [15] NIOSH estimates that 10,000 workers have potential 

occupational exposure to phosgene during its manufacture and use.

Historical Reports

Berghoff [16] reported his observations of 2,000 cases of exposure to 

war gases during World War I. These included chlorine, mustard gas, and 

phosgene. The main complaint expressed by those exposed to phosgene was a 

weakness which developed as early as 2 hours or as late as 3 days after 

exposure. This weakness lasted for weeks or months. The author also noted 

that emphysematous patients had a more protracted convalescence than those 

classified as bronchitic.
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Effects on Humans

Wells et al [17] published a detailed report on effects of barely 

detectable concentrations of phosgene on humans. Fifty-six military 

personnel, without upper respiratory problems, were exposed to increasing 

concentrations of phosgene until all the subjects could detect phosgene by 

odor. The authors reported that 50% of "technically trained" (without 

further clarification) observers detected phosgene at a concentration of 

6.1 mg/cu m (1.5 ppm). Thirty-nine percent detected it at a concentration 

of 4.7 mg/cu m (1.2 ppm). None detected it below a concentration of 1.5 

mg/cu m (0.4 ppm). The authors exposed the subjects to phosgene in 

increasing concentrations until they detected an odor. No effort was made 

to distinguish phosgene from other odors. No effects other than odor 

detection were reported.

Leonardos et al [18] studied phosgene odor thresholds using a panel 

of 4 members. The odor threshold was defined as the first concentration at 

which all 4 members recognized the odor. They distinguished this from the 

"detection threshold" which they felt was neither reliable nor 

reproducible. They determined a "hay-like" odor threshold for phosgene of 

1.0 ppm.

Thiess and Goldmann [19] described their experience with 109 cases of 

accidental phosgene inhalation, including one fatality, in one industrial 

plant. The patients reported that they were exposed to only 1 or 2 whiffs 

of phosgene each, but some exposures were probably more severe. No further 

quantitation was described by the authors. Of these cases, 70 had 

insignificant clinical problems, hence were not studied in detail by the 

industrial physician. No details were given concerning these so-called
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insignificant complaints. Of 31 cases in which X-ray studies were 

performed after exposure, 5 showed pulmonary abnormalities upon 

radiological examination. Only 3 of these showed the characteristic 

picture of pulmonary edema. The authors reported that the patients 

followed the "typical symptoms and course of phosgene poisoning: after an

almost unnoticed inhalation,...a certain symptom-free latent period of 2 to 

8 hours follows, and then the typical pulmonary edema (occurs)...." These 

three cases were described in detail.

A 19-year-old chemical laboratory assistant was accidentally sprayed 

with an unknown volume of liquid phosgene. The gas mask he was wearing was 

not leakproof, hence phosgene penetrated the mask. The mask and upper 

clothing were removed inmediately. No first aid was administered. Upon 

admission to the hospital a little more than half an hour after exposure, 

the patient was observed to be in respiratory distress. Chest films showed 

infiltration of the lungs and pulmonary edema. Therapy consisted of 

phlebotomy, digitalization, intravenous fluids, and antibiotics. Three 

weeks of hospitalization were required before the patient could return 

home. No sequelae were described.

A 20-year-old chemical laboratory assistant was sprayed in the face 

with chlorobenzene saturated with phosgene under pressure. It was

estimated that one mole of gaseous phosgene was released during the

accident. First aid consisted only of washing the face and hair in water.

Five hours after exposure, the patient felt a slight pressure on his chest.

Eight hours after exposure, he became dyspneic and expectorated bloody 

sputum. He was admitted to the hospital one hour later. Chest films 

showed pulmonary edema. Thirteen days of hospitalization, which included
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treatment with corticosteroids, digitalis, and oxygen, were required to 

resolve his pulmonary problems.

The fatal accident involved a 55-year-old mason who was presumed to 

have been exposed to phosgene released by chipping of brick which had 

possibly adsorbed phosgene. In this case, phosgene was a byproduct in the 

production of aluminum chloride. An analysis of the apparatus the patient 

worked on revealed that 2.5 liters of interstitial air volume in the brick

at 360-400 C was available for absorbing the phosgene. The amount of dust

inhaled by the patient is unknown. He was exposed for 30 minutes and first 

complained of dyspnea about 2 hours after completing the job. No first aid 

was given. Five hours after exposure, he was admitted to the hospital in 

severe respiratory distress. Chest films showed pulmonary edema. Despite 

phlebotomy and treatment with digitalis and diuretics, the patient died of 

acute right heart failure about 14 hours after his initial exposure.

Two cases of phosgene exposure were reported by Gerritsen and Busch- 

mann. [6] They were due to accidental formation of phosgene from

chlorinated hydrocarbons. Both cases involved the use of chemical paint

removers in poorly ventilated areas heated by portable kerosene stoves. 

The first case involved a 52-year-old man who was exposed for an unknown 

period. He noted respiratory irritation soon after beginning work but 

persisted working for several hours. Chest symptoms occurred thereafter 

and the patient, upon examination, exhibited signs of pulmonary congestion. 

Approximately 5 hours later, the patient went into frank pulmonary edema 

and died within a few hours. Autopsy showed extensive degenerative changes 

in the epithelium of the trachea, bronchi, and bronchioli, together with 

hemorrhagic edematous focal pneumonia.

31



The second case [6] involved a 38-year-old woman, in her 7th month of 

pregnancy, who was exposed in a similar manner for 3 hours in the 

afternoon. That evening hemoptysis occurred. The next morning, symptoms 

worsened and she was hospitalized. A chest film upon admission showed 

pulmonary edema. After 8 days' hospitalization, she was released even 

though her chest film did not yet show a complete return to normal. After 

2 months, she gave birth to a healthy child. This is the only case found 

which reported phosgene exposure during pregnancy.

In attempting to reproduce the circumstances of exposure of the above 

2 cases, [6] it was found that methylene chloride was rapidly decomposed 

with phosgene being the main decomposition product when methylene chloride 

was exposed to heat in a poorly ventilated area. The authors stated that 

this was in contrast to the results reported by Little [20] when methylene 

chloride was decomposed by hot surfaces and low amounts of phosgene were 

produced in comparison with hydrogen chloride and chlorine.

Another case of possible phosgene poisoning resulting in death was 

reported by Spolyar et al. [5] The case involved a chlorinated solvent 

degreaser which was inadvertently filled with trichloroethylene instead of 

perchloroethylene. The operator of the degreaser was found dead 3 1/2

hours after exposure began and 1 hour after he reported that fumes were 

escaping from the apparatus. Autopsy showed pulmonary edema consistent 

with exposure to phosgene. It was assumed that the trichloroethylene 

vaporized and passed through the firebox of a nearby space heater, with 

decomposition of the trichloroethylene and the production of phosgene. 

Cause of death was consistent with phosgene exposure but it was suggested 

that trichloroethylene might have contributed to the circulatory collapse.
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An attempt was made to reproduce the environmental situation. [5] Sampling 

of the breathing zone of the operator revealed a phosgene concentration of 

15 ppm. The analytical method was altered to correct for interferences by 

trichloroethylene at 3,300 ppm in air, the estimated trichloroethylene 

concentration at the time of exposure. During the test simulation, 

trichloroethylene levels exceeded 10,000 ppm after 1 hour and 20 minutes of 

degreaser operation.

Glass et al [21] reported a case of poisoning attributed to phosgene 

following the welding of a metal which was damp with trichloroethylene used 

for cleaning purposes. After 4 1/2 hours' exposure, the worker noted

respiratory symptoms and felt unwell. He returned home, but the next 

morning he was dyspneic. Chest films taken 24 hours after exposure and 90 

days later showed the diaphragm below the eleventh rib posteriorly with 

limited excursion and clear lung fields. Pulmonary function tests, 

including spirometry, carbon monoxide uptake, and arterial blood gases, 

abnormal at first, improved over a 3-month period following exposure. The 

authors' impression was that the patient suffered from chronic bronchitis 

which was exacerbated by phosgene. Unfortunately, no studies of phosgene 

in the air were conducted in the workplace under conditions simulating that 

of the original exposure.

Derrick and Johnson [22] reported a case of presumed phosgene 

exposure due to tfhe breakdown of trichloroethylene by cigarette smoking. 

The patient had worked as a drycleaner for 3 months. Studies indicated 

that the average concentration of trichloroethylene in the room was 488 

ppm. The authors indicated that this level would be exceeded when clothing 

was removed from the cleaning machine. The patient was known to smoke 40
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cigarettes/day. He frequently smoked in the cleaning room. He left work 

at 4:00 p.m., and about 90 minutes later he collapsed and died. An autopsy 

showed pulmonary edema. Phosgene was believed to have been generated by 

the decomposition of trichloroethylene in contact with the hot tip of a 

burning cigarette. This theory is contradicted by the work of Little [20] 

who measured phosgene in the effluent gas of cigarettes and did not detect 

any in atmospheres containing trichloroethylene, chloroform, carbon 

tetrachloride, perchloroethylene, or even small amounts of phosgene.

Everett and Overholt [23] reported a case of phosgene poisoning but 

gave no details of exposure other than "massive exposure to phosgene." 

Initial symptoms were burning of the eyes and coughing. These cleared 

after a few minutes, but dyspnea occurred in 3 hours. X-ray studies showed 

pulmonary edema which resolved over 7 days of hospitalization and treatment 

which included antibiotics, corticosteroids, and oxygen. The patient 

remained well during the ensuing 2 years.

The Bureau of Engineering Safety, Department of Labor and Industry, 

State of New Jersey, [24] reported one fatality among 6 employees exposed 

to phosgene at unknown concentrations in separate accidents over a 2-year 

period. The exposures occurred in a plant conducting "phosgenation" where 

measurements of air concentrations were normally reported to be below 0.1 

ppm. Subsequently, all phosgene operations were stopped because of 

inadequate engineering controls.

Delepine [25] described 2 cases of fatal phosgene poisoning. The 

first man had his clothing saturated with phosgene and was treated almost 

immediately. He appeared well but experienced symptoms 6 hours after 

exposure. Treatment (details not given) was temporarily helpful, but the
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patient died 11 hours later. The second man was exposed as a result of the 

explosion of a phosgene cylinder. Death occurred 22 hours after exposure. 

At autopsy, both cases showed evidence of severe irritation of the 

respiratory tract with almost complete shedding of the laryngeal, tracheal, 

and bronchial epithelium.

English [8] reported a case of poisoning attributed to phosgene in a 

67-year-old male with several years* history of chronic bronchitis and a 

quiescent duodenal ulcer. After an 8-hour exposure in a room heated by a 

stove burning paraffin in which paint-strippers containing chlorinated 

hydrocarbons had been used, the worker experienced dyspnea. The next

morning, his symptoms increased and he was hospitalized. Chest X-rays

showed diffuse bronchiolitis. Despite treatment, dyspnea persisted for 4 

days in the hospital. He was discharged after 6 weeks. English stated 

that phosgene dissolved in saliva irritated the alimentary mucosa and, 

hence, was responsible for reactivation of a duodenal ulcer in this 

patient. He cited no authorities for this statement or clinical or 

experimental evidence to support it. No other references to the effects of 

phosgene on gastrointestinal mucosa were found other than Cherkes' [26]

statement that stasis and venous hyperemia occur in the gastrointestinal 

tract as a result of pulmonary edema.

Seidelin [7] reported a case of probable phosgene inhalation leading 

to pulmonary edema in a 16-year-old woman. This occurred after she had 

used a carbon tetrachloride fire extinguisher in an enclosed space. 

Inhalation of smoke and fumes resulted in immediate coughing. Six hours 

later, she developed respiratory symptoms and subsequently was admitted to 

the hospital with pulmonary edema. Complications ensued including
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mediastinal emphysema and bilateral pneumothoraces. Oxygen therapy

resulted in considerable clinical improvement in 8 days, but she was unable 

to leave the hospital until 13 days after exposure.

Stavrakis [27] described 7 cases of phosgene exposure. The first was

a worker who developed dyspnea, cough, and chest pain 4 hours after

exposure, which were severe enough to bring him to a hospital emergency 

room. Treatment with hexamethylenetetramine was given immediately, 

followed by standard therapy consisting of steroids, oxygen, and 

antibiotics. He was discharged in good health after 5 days. The other 6 

workers were exposed when a pipe ruptured and released phosgene. The 

extent of exposure was not described. One heavily exposed worker was 

treated immediately with hexamethylenetetramine. He remained asymptomatic 

until his discharge 24 hours later. Another worker, similarly exposed, 

waited until symptoms occurred before seeking treatment. He died despite 

treatment with hexamethylenetetramine. Pour others, who were treated in 

the symptomatic stage, required hospitalization for various periods until 

recovery occurred.

In 1946, Galdston et al [28] reported studies of 6 cases of acute 

exposure to phosgene with residual effects up to 19 months after the last 

known acute exposure. Evaluation of each patient included physical 

examinations, chest X-rays, pulmonary function tests, and a psychiatric 

summary. These cases shared a common background of brief single exposures 

to phosgene at unknown concentrations which usually led to delayed 

pulmonary edema. One of the cases is interesting in that exposure occurred 

at a hood which contained an ampule of only 40 ml phosgene. All were 

treated at Johns Hopkins Hospital and released, some returning to a normal
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work routine. However, follow-up examinations revealed that all had 

lingering complaints, and although physical examinations and chest X-rays 

up to 19 months later were generally normal, pulmonary function tests 

always revealed some abnormalities consistent with beginning pulmonary 

emphysema. The authors felt that psychological factors contributed to the 

lingering symptomatology. Their findings are summarized in Table III-l.

Cherkes, [26] in an extensive review of the literature concerning the 

clinical course of acute phosgene exposure, noted that most fatalities 

occur during the first 24-48 hours. He reported that most patients dying 

within the first 72 hours died of pulmonary edema or cardiac problems. 

Those dying later usually succumbed as a result of complications, such as 

infection (usually pulmonary), thrombosis, or embolism. He gave no source 

for these statements other than "according to the data of various authors." 

The clinical course following phosgene exposure reported by Cherkes is 

generally in agreement with other reports following human and animal 

exposure. [5,6,21,25,27,29,30,31]

Ardran [32] pointed out that many victims of phosgene poisoning 

showed radiological evidence of increased lung volumes. His experiments 

with dogs [33] indicated that animals that failed to develop an increase in 

lung volume after phosgene exposure also failed to develop pulmonary edema. 

This test had been used by him clinically. [32] He reported that, if an 

expiratory lung film shows evidence of an increase in volume after exposure 

to phosgene, then pulmonary edema may be expected. He stated that he had 

looked for this sign in humans exposed to lung irritants and that never, in 

20 years, had he found pulmonary edema to develop in the absence of 

antecedent increased lung volume. There has been no independent
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TABLE III-l

SUMMARY OF CLINICAL OBSERVATIONS AND DATA ON STUDIES PERFORMED
AFTER ACUTE EXPOSURES

Case Number* 1 2 3 4 5 6

Age 38 39 30 48 43 49
Months after accident** 14 6 6 3 5 5
Months worked with phosgene 6 12 18 24 2 1
Chronic symptoms A N N A A A
Physical signs

Acute A A A A N N
Chronic N N N B N N

Roentgenogram of chest N N N N N N
Volume

(Vital capacity N N N A N N
+ % residual air) =
Total capacity B N N B N N

Intrapulmonary mixing of gases N N B A N B
Pulmonary emptying N N N A N B
Resting pattern of breathing

High rate N A A A A A
Low tidal air N N A B A A
High min. volume N A A A A A
Low oxygen extraction B A A B A A

Exercise pattern of breathing
High rate N B B B A A
Low tidal air B N B B N A
Low oxygen extraction N N N B A A

Arterial blood
At rest N A N N A N
After exercise N A N N N -

After oxygen administration - N - N A -

Breath holding N N N A A N
Voluntary breathing capacity N A A N A N
Postural tests N N N N N N
Cardiac output N A N N N

A = Definitely abnormal B = Borderline abnormal
N = Normal - = Not done

* Listed in order of severity of exposure.
** Applies to all special studies except arterial blood and alveolar air
oxygen and carbon dioxide tensions and cardiac output which were performed 
4-8 months later. Symptoms, physical and X-ray findings were unchanged 
on reexamination of all available patients (except No. 5) 4-8 months later. 
From reference 28
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confirmation of his interesting findings, and he gave no pulmonary function 

test data on his patients.

Steel [34] described 2 cases of exposure to phosgene at low 

concentrations (figures for duration or concentration not stated). Both 

patients developed delirium, fever, tachycardia, tachypnea, and a painful 

cough. The more exposed patient developed pulmonary edema; the other

showed only acute bronchitis. Steel noted that both patients developed

amnesia about their exposure. He stated that he regarded neither fever nor 

amnesia as characteristic of exposure to phosgene.

One of the few publications relating to workers with multiple 

exposures to phosgene at low concentrations over prolonged periods is that 

of Galdston et al. [35] Their observations are summarized in Table III-2. 

The study involved the pulmonary function, cardiovascular and psychiatric 

status of 5 workers who had repeated exposures to small amounts of phosgene 

during the course of 18-42 months. In none of the cases was notation made

of odor detection by the patients during exposure, prior to the development

of more serious symptoms. The first patient, age 32, had a noncontributory 

past history except for conjunctivitis and laryngitis after working with 

mustard gas during 2 time periods. Several exposures to phosgene caused a 

feeling of chest constriction, dizziness, headaches, blurred vision, and 

mental confusion. The same year, he experienced severe irritation of the 

throat from inhaling chlorine. He worked with phosgene for another 4 

months and noted chest tightness, dyspnea on exertion, and muscular 

twitching he ascribed to recent minor exposures to phosgene. The findings 

of his physical examination and chest roentgenogram were normal; however, 

pulmonary function studies showed a decrease in vital capacity, impaired
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intrapulmonary gas mixing and other changes consistent with pulmonary 

emphysema.

The second patient, [35] age 50, also had a noncontributory past 

history prior to working with phosgene. He had had numerous minor 

exposures to phosgene which were usually followed by a sense of 

constriction in the throat, dyspnea, cough, nausea, and vomiting. After 

working with phosgene, he had a productive cough which occasionally tasted 

of phosgene. Findings from his physical examination were normal, but his 

chest roentgenogram and pulmonary function studies were consistent with 

pulmonary emphysema.

The third patient, [35] age 24, had had a history of asthma since 

childhood. He had several minor exposures to chlorine before working with 

phosgene. On 6 occasions, he inhaled enough phosgene to induce coughing, 

choking sensations, nausea and vomiting, headache, and sweating, which 

disappeared the day following exposure. Physical examination demonstrated 

only thoracic kyphosis and bilateral basilar rales. Roentgenograms and 

pulmonary function studies were consistent with pulmonary emphysema.

The fourth patient, [35] age 31, had chronic tonsillitis, otitis, and 

adenoiditis apparently prior to his phosgene exposure. He also had minor 

symptomatic episodes of exposure to chlorine and mustard gas. After about 

6-9 months of exposure to phosgene, physical examination showed a 

perforated right eardrum and bilateral basilar rales. Roentgenograms of 

the lungs showed what was described as an old obliteration of the left 

costophrenic angle. Pulmonary function studies were consistent with 

pulmonary emphysema.
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The fifth patient, [35] age 26, had worked with both phosgene and 

chlorine during separate periods. He had a few minor exposures to phosgene 

which resulted in conjunctival irritation, dyspnea, and headache. Physical 

examination and roentgenographic studies were normal. Pulmonary function 

studies showed only a reduction in voluntary breathing capacity. The 

authors concluded that "emphysema of the lungs may develop after chronic 

exposure to phosgene."

This study is an important one in that it deals directly with the 

problem of repeated minor exposures to phosgene. Unfortunately, Galdston 

et al [35] did not comment on how these patients were selected or on any 

quantitation of the phosgene exposures. This paper also did not consider 

continuous exposures at a low level of phosgene during a full workday and 

workweek over an extended period. It is, however, the only paper available 

with clinical and laboratory data collected on humans with repeated 

exposures to phosgene, (see Table III-2)
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TABLE III-2

SUMMARY OF CLINICAL OBSERVATIONS AND DATA ON STUDIES PERFORMED
AFTER CHRONIC EXPOSURES

Case Number* 1 2 3 4 5

Age 32 50 24 31 26
Months worked with phosgene 42 36 30 16 30
Chronic symptoms A A A A A
Physical signs

Acute N N N N N
Chronic N B A N N

Roentgenogram of chest N A A N N
Volume

(Vital capacity A N B N N
+ % residual air) =
Total capacity A B A B N

Intrapulmonary mixing of gases A A A A N
Pulmonary emptying N B A A N
Resting pattern of breathing

High rate N A A A N
Low tidal air N A A B N
High min. volume N A A A N
Low oxygen extraction N N B A N

Exercise pattern of breathing
High rate N B B B N
Low tidal air N B B B N
Low oxygen extraction N N A A N

Arterial blood gases**
At rest N A N N -

After exercise N N A A -

After oxygen administration N - - - -
Breath holding N A - N N
Voluntary breathing capacity N A A N A
Postural tests N - - - -

Cardiac output N A N N —

A = Definitely abnormal B = Borderline abnormal
N = Normal - = Not done

* Listed in order studied
** Arterial blood oxygen, alveolar air oxygen and carbon dioxide tension 
studies at rest and after exercise were performed 4-8 months after all 
other studies were completed. Symptoms, physical and roentgenographic 
findings were unchanged on reexamination of all available patients (all 
but one) at that time.
From reference 35

42



Epidemiologic Studies

Levina et al [36] described the working environment in the monuron, 

3—(p—chlorophenyl)-l,1-dimethylurea, industry. Phosgene is involved in its 

synthesis and was found to be contaminating 90 workers1 production areas at 

a concentration of 1.0—2.0 mg/cu m (JO. 2 5 —0 .5 ppm) over a 6—month period 

under investigation. According to Smelyanskiy and Ulanova, [37] the 

permissible level for the USSR was 0.5 mg/cu m (0.125 ppm). Other 

contaminants included chlorobenzene, dimethylamine, and parachloro-

phenylisocyanate. Levina et al [36] reported no pulmonary problems in 

these workers, but did not describe searching for them.

Levina and Kurando [38] reported their studies of a plant 

manufacturing a weed killer (isopropylphenylcarbamate) using phosgene,

isopropyl alcohol, aniline, and caustic soda as raw materials. Although a 

closed process was used, phosgene was found in 30% of all air samples, most 

frequently at a concentration of 0.5 mg/cu m (0.125 ppm). A total of 89 

workers were studied for evidence of hematological abnormalities. 

Methemoglobinemia and anemia were detected which were attributed to the 

weed killer and aniline. No mention was made of pulmonary problems.

At a plant where phosgene is manufactured, the medical records of all 

exposed workers (326) were compared with those of 6,288 nonexposed workers. 

(AF Myers, written communication, November 1974) Pulmonary function, lung 

problems, and deaths related to lung problems were tabulated for both 

groups. The data were taken to indicate that there were no chronic lung 

problems related to working in these phosgene operations. By using the age

distribution of employees and pensioners and comparing their deaths from

lung problems with those expected from a similar age group (described as
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taken from National Statistics) not exposed to phosgene, no increase in 

lung-related deaths was noted in the phosgene-industry workers. The 

details of pulmonary function testing were not provided. The results of a 

limited program of air sampling conducted during a 2-month period were 

provided. Fifteen personal air samples collected for 20-minute periods and 

analyzed using the NBP method used by AF Myers (written communication, 

November 1975) and described in Chapter IV of this document showed

concentrations ranging from nondetected to 0.08 mg/cu m with an average 

concentration of 0.012 mg/cu m. From a total of 56 fixed-position samples 

collected for 2-hour or 20-minute periods, 51 samples showed concentrations 

ranging from nondetected to 0.52 mg/cu m (ND-0.13 ppm). The remaining 5 

samples showed "off-scale" measurements (greater than 0.55 mg/cu m)

reportedly due to leaks.

Animal Toxicity

Clay and Rossing [39] exposed 25 mongrel dogs to phosgene at a

concentration between 24 and 40 ppm for 30-minute periods at a rate of 1-3 

exposures/week. Those exposed once or twice showed acute bronchiolitis and 

peribronchiolitis involving terminal and respiratory bronchioles. The 

trachea and bronchi were visually unaffected and the proximal bronchioles 

were seldom damaged. Those exposed 4-10 times had chronic bronchiolitis of 

the proximal and intermediate portions of the respiratory bronchioles. The 

animals exposed 30-40 times showed changes which were described as 

resembling those of early emphysema.

Box and Cullumbine [40] studied the problem of an apparent reduction 

in susceptibility to phosgene intoxication by prior exposure. They exposed
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rats for 10 minutes to phosgene at concentrations of 80 mg/cu m (20 ppm). 

Five days later, the preexposed animals and an equal number of control 

animals were exposed to phosgene at lethal concentrations (230-440 mg/cu m, 

55-110 ppm) for 10 minutes. The mortality rate for controls was 74%, while 

for pregassed animals it was only 33%. They attributed this finding to 

rapid and shallow breathing caused by pulmonary damage in the first 

exposure.

Rinehart and Hatch, [41] using low concentrations of phosgene (0.5-4 

ppm for 5-480 minutes) on rats, attempted to work out the validity of the 

concentration-time product (Ct) in ppm-minutes as a measure of dose of 

sublethal exposures to phosgene. On the basis of the responses (expressed 

in terms of impaired pulmonary gas exchange capacity as measured by the 

decreased rates of uptake of carbon monoxide and ether) of 118 Wistar rats, 

the authors concluded that the Ct was a suitable way to express the 

magnitude of the dose, and that low-level exposure to phosgene with a Ct 

equal to or less than 100 ppm-minutes caused increased resistance to 

breathing and poorer distribution of air within the lungs. Above a Ct of 

100 ppm-minutes, decrease in diffusion capacity became more important. 

They attributed this to differences in the major site of action, ie, the 

respiratory bronchioles in the first case, and the alveoli in the second. 

The authors noted that above a Ct of 30 ppm-minutes gas exchange capacity 

decreased directly with the logarithmic increase in Ct. Rinehart and Hatch 

[41] noted no significant effect of phosgene on the test animals' pulmonary 

performance when subjected to exposures less than a Ct of 30 ppm-minutes. 

The animals' exposures were varied to cover a Ct product range of 12-360 

ppm-minutes.
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Gross et al [42] studied the effect of low concentrations (0.5-4 ppm 

for 5-480 minutes) on rats. They found that they could produce a chronic 

pneumonitis which was reversible but left detectable lesions for up to 3 

months. They felt they could explain this by the fact that low dosages of 

phosgene merely irritated the pulmonary alveolar epithelium, resulting in 

proliferation. The more severe exposures of phosgene usually reported in 

the literature destroyed the surface epithelium and attacked the underlying 

alveolar capillaries, thus resulting in pulmonary edema. The authors noted 

that the severity of the chronic pneumonitis correlated well with the Ct 

value of the phosgene exposure and seemed to be largely independent of the 

concentration of the gas in the same bracket of Ct values. Animals in the 

study by Gross et al [42] were subjected to Ct products ranging from 13 to 

360 ppm-minutes. In the 18 rats exposed to phosgene with Ct products equal 

to 30 ppm-minutes or less, 5 (28%) showed no abnormalities on pathologic 

examination; 11 (61%) showed slight chronic pneumonitis; and 2 (11%) showed 

moderate chronic pneumonitis.

Wirth [43] studied the effect of low concentrations of phosgene upon 

cats. He reported that, if the concentration was expressed as mg/cu m, the 

lethal concentration x the survival time in minutes was approximately 

1,000. At low concentrations (5-7 mg/cu m, 1-2 ppm), the constant was as 

high as 3,000. This shows that the lethal Ct product is considerably 

higher at low concentrations. The author felt that the increase in Ct 

product at low concentrations was due to detoxification and that the 

practical usefulness of the Ct formula was not affected by this, provided 

it was used within certain concentration limits.
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Cordier and Cordier [44] exposed cats and guinea pigs to phosgene at 

concentrations of 20-25 mg/cu m (5.0-6.25 ppm) and 10-15 mg/cu m (2.5-3.75 

ppm) repeatedly over several weeks. The duration of each exposure was 10 

minutes. The interval between exposures was 24 hours, and the number of 

exposures varied from 2 to 41. Examination of the animals concentrated on 

body weight, organ weight, and microscopic examination of the lungs. After 

exposure at 20-25 mg/cu m, all animals developed pulmonary lesions, 

although signs of these were not detected while the animals were alive. 

Microscopic examination of the 15 cats exposed indicated that all but two 

had some degree of pulmonary edema. The remaining two showed other lung 

abnormalities. The degree of lung damage did not show any increase with 

increasing number of exposures. Therefore the authors concluded that there 

is no cumulative effect of phosgene at this concentration when the duration 

of exposure is short and the animals are given time to recover between 

exposures. Both cats and guinea pigs were exposed to phosgene at the lower 

range of concentrations of 10-15 mg/cu m. Upon microscopic examination, 

pulmonary edema was found in 3 of 6 cats and in none of 6 guinea pigs. 

Other lung changes were found, but, in general, the effect on the pulmonary 

alveoli was considered to be insignificant. The authors concluded that 

this concentration, inhaled daily for 10 minutes, seems to be the minimal 

concentration capable of creating edematous pulmonary zones. This minimum 

effect level, expressed as a Ct product (25—37.5 ppm—minutes) concurs with 

the minimum effect level of 30 ppm—minutes later found by Rinehart and 

Hatch [41] in experiments with rats using pulmonary uptake of carbon 

monoxide and ether to measure effect.
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Koontz [45] gassed dogs with phosgene at the minimum lethal dose 

(undefined by the author) and then studied 95 of those that survived. One- 

third died or were killed by other dogs during the course of the

experiment. The other two-thirds were killed at intervals from 2 to 60

weeks. About one-half of the dogs showed no or only minor lesions. Those 

with more significant abnormalities showed transient bronchial plugging and 

adjacent atelectasis. Most of the lungs took on a more normal appearance 

as the time from recovery increased.

Durlacher and Bunting [46] exposed 31 dogs to phosgene at concen

trations averaging 0.29 mg/ liter (72.0 ppm) for 30 minutes. The animals 

were given a variety of treatments, including oxygen, transfusions, or

venesection. The most striking findings were consolidation of one or more

lobes of the lungs 4-9 days after exposure. The authors noted that 

"pulmonary organization occurred...and caused high mortality in spite of 

oxygen therapy." The oxygen therapy consisted of maintenance in an 

atmosphere of 60% oxygen when the arterial oxygen saturation was below 80%. 

No specific time for initiation of therapy other than "after exposure" was 

given.

Gross et al [47] described their findings concerning pulmonary 

reactions to toxic gases. They noted that the proliferative lesions 

produced by phosgene, chlorine, sulfur dioxide, nitrogen dioxide, ozone, 

and crotonaldehyde differed only quantitatively on a histologic basis. It 

appeared probable to the authors that, with a proper adjustment of the 

concentration, even the quantitative difference could be eliminated. They 

concluded that deep lung irritants preferentially attacked the respiratory 

bronchioles because of delayed clearance in that region.
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In 1920, Underhill [31] exposed dogs to phosgene and noted the 

development of pulmonary edema which was maximal at 24-36 hours and 

resolved in animals surviving 10 days or more. He concluded that the 

minimum lethal concentration of phosgene for dogs was 310-350 mg/cu m (75— 

87 ppm). He found that dogs that survived for 3 days usually recovered. 

He also concluded that recovery from gassing increased the likelihood of 

death from regassing of dogs, which differs from the findings of Box and 

Cullumbine [40] in rats. Underhill explained that tolerance is 

demonstrable only with low concentrations; it does not decrease subsequent 

reactions to lethal concentrations. Winternitz et al [48] presented 

detailed information on the pathology found in these animals at autopsy.

Long and Hatch [29] reported that a reduction in the rate of 

respiratory uptake of carbon monoxide was an early and sensitive test of 

pulmonary impairment following exposure to pulmonary irritants. The test 

was developed using unanesthetized rats and phosgene as the test irritant. 

The animals were exposed to phosgene for 30 minutes at the following 

levels: 0.5-1, 1-2, 2-3, 3-4, and 4-5 ppm. The responses included a

decrease in pulmonary uptake in CO which was progressive for 6-8 hours, 

followed by gradual recovery. They found that their test detected changes 

even at the lowest level of phosgene exposure (0.5-1 ppm) in the absence of 

microscopic changes at autopsy.

Boyd and Perry [30] exposed rabbits to phosgene for 30 minutes at a 

concentration of 270 mg/cu m (67 ppm). They reported a latent period of 

several hours following exposure. After the latent period, pulmonary 

edema developed.
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Noweir et al [49] exposed rats to decomposition products of carbon 

tetrachloride at its TLV (10 ppm) and demonstrated [9] that up to 10 ppm of 

phosgene could be produced by thermal decomposition of this level of carbon 

tetrachloride. Thermal decomposition was achieved by passing a stream of 

carbon tetrachloride over a variety of hot surfaces including iron and

glass, as well as open flames. Animals were exposed for 12 or 60 minutes

to phosgene at concentrations of 10 or 2 ppm allowing an equal Ct of 120 

ppm-minutes. Mixtures of decomposition products were tested as well. No 

marked potentiation of each irritant's effects upon the others was

discovered. They found that chlorine, chlorine dioxide, and hydrogen 

chloride as well as phosgene contributed to respiratory damage.

Winternitz et al [50] studied the comparative pathology of acute

phosgene poisoning. They reported that the pathologic findings of acute 

phosgene poisoning were similar in goats, dogs, monkeys, rabbits, guinea 

pigs, rats, and mice. These findings consisted primarily of pulmonary 

edema which increased in severity with the length of survival of the 

species. The most susceptible species, monkeys and guinea pigs, died prior 

to the development of pulmonary edema as severe as that seen in the dog or 

goat.

The basic mechanism of action by which phosgene produces lung damage 

has, as yet, not been established. The original supposition that liberated 

HC1 was the toxic agent was never proved. A number of experiments carried 

out in World War II appear to have disproved the liberated HC1 hypothesis 

and shown that phosgene affects tissues because the carbonyl group combines 

with free amines of cell enzymes or other critical substances. [51] A more 

recent theory is that of Ivanhoe and Meyers [52] who exposed rabbits to
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phosgene at concentrations ranging from 50 ppm for 14 minutes to 200 ppm 

for 25 minutes. Their results showed a marked decrease in sympathetic 

nervous system activity in exposed animals. The authors concluded that 

phosgene toxicity was an example of acute pulmonary edema resulting from a 

hypoactive-sympathetic or neuroparalytic state in the host. This is 

corroborated, in part, by the work of Frosolono [53] who studied rat lungs 

by electron microscopy after exposures of 1,000 ppm-minutes to 4,320 ppm- 

minutes. The author noted interstitial edema as the common denominator of 

phosgene poisoning and felt that the autonomic nervous system might indeed 

play a significant role.

Cameron and Foss [54] exposed a group of animals to phosgene at an 

average concentration of 4.38 mg/cu m (1.1 ppm) for 5 hours/day for 5 days. 

The animal exposure group consisted of 20 mice, 10 rats, 10 rabbits, 2 

cats, and 2 goats. After 24 hours, 50% of the mice were dead (10/20); 

after 48 hours, another 8 died, resulting in a casualty rate of 90% in 48 

hours (18/20). All mice showed marked mottling of lungs with congestion, 

edema, and what was described as emphysema. Two rabbits died after 48 

hours (2/20). On examination, one showed large areas of collapse in the 

lung with congestion and edema. The other rabbit showed some edema and 

congestion. The remaining animals survived and were killed at the end of 

the 5 days of exposure. Microscopic examination of the lungs of 37 of the 

animals showed that 22 (59%) had lung changes graded as severe, 15 (41%)

had mild lung changes. Severe lesions were found in the cat, rabbits, 

guinea pigs, and mice. Goats and rats were much less affected. Edema was 

present in 35 of the 37 examined (95%), with severe edema in 12 animals, 

moderate edema in 13, and slight edema in 10. All species showed some 

degree of edema.

51



In a subsequent study, Cameron et al [55] exposed a group of animals 

to phosgene at an average concentration of 3.47 mg/cu m (0.86 ppm) for a 

single 5-hour exposure. The animal exposure group consisted of 20 mice, 10 

rats, 10 guinea pigs, 10 rabbits, 2 cats, 2 monkeys, and 2 goats. On the 

morning following exposure, 10% of the rats (1/10) and 60% of the mice 

(12/20) were dead. There were no other casualties, although one cat and 

one monkey were very ill with considerable labored breathing. All 

survivors of the experiment were killed on the morning following exposure. 

All animals were then autopsied and one lung from each animal was fixed in 

formalin for sectioning. Upon examination, 54 out of 56 animals (96.4%) 

showed microscopic evidence of pulmonary involvement which was severe in 29 

animals (39%), mild in 17 (31%), and slight in 16 (30%). The most frequent 

lung change noted was edema.

In another study, Cameron et al [56] reported the results of exposing 

a variety of animals to phosgene at an average concentration of 0.9 mg/cu m 

(0.2 ppm) for 5 hours daily for 5 consecutive days. The experimental group 

consisted of 20 mice, 10 rats, 10 guinea pigs, 10 rabbits, 2 cats, and 2 

goats. No deaths occurred during the exposures. Except for some labored 

breathing noted in the cats and in one goat, the other animals showed 

little evidence of distress. At autopsy, pulmonary lesions were seen in 

67% of the animals. In the opinion of the investigators, the great 

majority of such lesions were slight and of little significance. 

Discounting the more susceptible animals (guinea pigs) and correcting for 

the normal incidence of disease in laboratory animals, the authors 

estimated that probably between 5 and 10% of the animals showed moderately 

severe lesions. Pulmonary edema was noted in 41% of the animals but was
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considered to be slight in most cases. In 6 animals (1 rabbit, 1 mouse, 1 

rat, and 3 guinea pigs), it was extensive. Acute bronchitis was noted in 

22% of the animals and bronchial regeneration in 20%. Their results are 

shown in Table III-3.

In their summary statement, the authors [56] advanced the opinion 

that there is little doubt that repeated exposure at low concentrations 

(0.9 mg/cu m) induces damage to the lungs but that such damage was rarely 

severe. Seemingly in contradiction with this, they also stated that, at 

this concentration, some fairly severe changes are found in the lungs of 

experimental animals.
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TABLE III-3

SEVERITY OF LUNG LESIONS AFTER EXPOSURE TO 0.2 PPM PHOSGENE, 
5 HOURS DAILY FOR 5 CONSECUTIVE DAYS

Total Number of Animals

Goats

2

Cats

2

Rab
bits
10

G.
pigs
10

Rats

10

Mice

20

Total

54

%

Severe lesions 0 0 0 1 1 0 2 4
Mild lesions 0 0 1 3 1 1 6 11
Very slight lesions 0 I 5 6 3 13 28 52
No lesions 2 1 4 0 5 6 18 33

Incidence of pulmonary
edema 0 1 5(1) 7(3) 2(1) 7(1) 22 41

Incidence of severe
bronchitis 0 1 5 5 1 0 12 22

Incidence of
bronchial regeneration 0 0 4 5 1 1 11 20

Incidence of broncho-
pneumonia 0 0 0 1 1 0 2 4

Figures in parentheses under pulmonary edema indicate number of animals 
showing fairly severe edema.

From reference 56
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Correlation of Exposure and Effects

Phosgene is known historically as a respiratory poison used to 

disable large masses of soldiers. It is no longer used as a military 

weapon but has become an important industrial chemical. The focus of 

impairment to the health of those who are exposed to high concentrations of 

the gas has therefore shifted from the military to industry. Epidemiologic 

studies [38, AF Myers, written communication, November 1974] have shown no 

ill effects definitely attributable to phosgene in workers exposed to 

phosgene at an average of 0.125 ppm or less for considerable periods. 

However, the investigations of Levina and Kurando [38] did not mention 

studying the possibility of pulmonary disease, and the Myers communication 

indicated that, most of the time, levels were actually much lower than 

0.125 ppm.

Animal studies, for the most part, have attempted to duplicate the 

war gas or accidental overexposure situation where there is exposure to 

phosgene at high concentrations for relatively short periods. These 

studies, summarized in Table III-4, [29,30,31,39,40,41,42,45,46,48] have 

shown a fairly similar picture, ie, animals dying immediately show severe 

pulmonary epithelial and capillary destruction, and animals surviving show 

variable amounts of bronchiolitis, pneumonitis, bronchial plugging, 

atelectasis, pulmonary consolidation, pneumonia, and emphysema.

The one animal study [56] devoted to long-term, repeated exposure to 

phosgene at low concentrations produced pulmonary edema in 41% of the 

animals. After correcting for the normal incidence of disease in 

laboratory animals, 5-10% of the animals had moderately severe lesions.
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Human exposures to phosgene reported in the literature (summarized in 

Table III-5) consist of many instances of acute overexposure. The work of 

Galdston et al [28,35] is the best substantiated in the American literature 

and gives details of pulmonary function studies in 11 workers with single 

acute or repeated exposures to phosgene at unknown concentrations. 

Unfortunately, other pulmonary irritants were sometimes involved.

Galdston et al [35] gave evidence that repeated exposures to phosgene 

can result in residual pulmonary problems. This paper reports on 5 workers

who were studied in detail, 2 of whom had abnormal chest films. It is

difficult to extrapolate the results found in these workers to what might 

be expected in the general population of workers exposed to phosgene over 

long periods of time.

Levina et al [36] found no pulmonary abnormalities in Soviet workers 

exposed to 1-2 mg/cu m of phosgene for over a 6-month period. Other 

inhalants apparently caused hematologic abnormalities. Unfortunately, no

mention is made of any pulmonary function studies done on these workers.

In summary, there are no truly pertinent data in the scientific 

literature concerned with long-term effects on humans exposed to phosgene 

at low concentrations. Animal data show a 5-10% incidence of severe 

pulmonary problems in animals exposed at 0.2 ppm. Despite Cherkes' [26] 

statement that the dog is the animal most resembling man in terms of 

susceptibility to phosgene, neither Cherkes nor any other investigator has 

offered any concrete data to support this contention. In fact, Winternitz 

et al [50] concluded that, based upon pathologic findings, phosgene lung 

changes were basically similar in all the species studied. Referring to 

investigations of others, Cucinell [57] has stated that, at least in terms

56



of lethality, man is about as susceptible as the mouse. But he also 

pointed out that data with which to correlate the toxicity of phosgene in 

man to that in laboratory animals at low concentrations do not exist.

Carcinogenicity, Mutagenicity, and Teratogenicity

Data on other possible effects of toxic chemicals, such as 

carcinogenicity, mutagenicity, or teratogenicity have not been reported for 

phosgene, and there is no analogy on which to postulate such effects on 

long-term, low-level exposure. However, with the likely ability of 

phosgene at high concentrations to cause extensive damage to lung tissue, 

it is conceivable that among survivors of such exposures occasional 

neoplasia might occur as the consequence of regeneration of damaged tissue.
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TABLE III-4

PHOSGENE INHALATION EXPOSURES AND EFFECTS— ANIMALS

Authors Exposure
Variables

Exposure
Time

Effects

Frosolono [53] Rats
1,000-4,320 ppm-min

Interstitial edema

Ivanhoe & Meyers 
[52]

Rabbits, 50-200 ppm 14-25 min Decrease in sym
pathetic tone

Underhill [31] 
as reported by 
Winternitz et al 
[48]

Dogs, 44-120 ppm 30 min Pulmonary edema, 
pneumonia, 
emphysema, death

Box & Cullumbine 
[40]

Rats 
20 ppm 
Rats 

55-100 ppm

10 min
tl

*

Reduction in 
death rate from 
74% to 33% by 
previous challenge

Durlacher & Bunting 
[46]

Dogs, 72 ppm 30 min Pulmonary con
solidation, death

Boyd & Perry [30] Rabbits, 67 ppm 30 min Pulmonary edema

Clay & Rossing 
[39]

Dogs 30 min 
24-40 ppm 1 or 2 exposures 

at rate of 1-3/week

Acute bronchiolitis

30 min 
4-10 exposures 

at rate of 1-3/week

Chronic bronchiolitis

30 min 
30-40 exposures 

at rate of 1-3/week

Emphysema

Cordier & Cordier 
[44]

Cats and 
guinea pigs 
2.5-6.25 ppm

10 min/day 
x 2-41 days

Pulmonary edema, 
bronchitis, broncho
pneumonia, death

* Animals were gassed to determine effect of pregassing upon a later challenge
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TABLE III-4 (CONTINUED)

PHOSGENE INHALATION EXPOSURES AND EFFECTS— ANIMALS

Authors Exposure
Variables

Exposure
Time

Effects

Long & Hatch [29] Rats, 0.5-5 ppm 30 min Decreased pulmonary 
CO uptake

Rinehart & Hatch 
[41]

Rats, 0.5-4 ppm 5-480 min Increased resistance 
to breathing 
decrease in dif
fusion capacity

Gross et al [42] Rats, " I I Chronic pneumonitis

Cameron & Foss 
[54]

Variety of animals, 
1.1 ppm

5 hours/day 
x 5 days

Pulmonary edema, 
death

Cameron et al 
[55]

Variety of ani,mals, 
0.9 ppm

5 hours/day 
x 1 day

Pulmonary edema, 
death

Cameron et al 
[56]

Variety of animals 
0.2 ppm

5 hours/day 
x 5 days

Pulmonary edema

Koontz [45] Dogs, unknown Unknown Bronchial plugging 
and atelectasis

59



TABLE III-5

PHOSGENE INHALATION EXPOSURES AND EFFECTS--HUMANS

Authors Exposure
Variables

Exposure
Time

Effects

Theiss & Goldmann 
[19]

Gerritsen & 
Buschmann [6]

Spolyar et al [5]

Delepine [25]

English [8]

Steel [34]

a) Unknown
b) 1 mole of 

phosgene**
c) Unknown

a)

b)

**

**

Unknown (15 ppm)*, 
* *

Glass et al Unknown **
[2 1 ]
Everett & Over- "
holt [23]

a) Unknown

b) " 

Unknown **

Seidelin [7] Unknown **

Stavrakis [27] a) Unknown
b) "

a) Unknown

b) "

Brief
M

30 min

Indefinite

3 hours

<3 1/2 
hours

4 1/2 hours 

Brief

8 hours

Brief
f t

II

Derrick & Unknown ** "
Johnson [22]______________________________________
* Re-created exposure simulating accident 
** Simultaneous exposure to chlorinated hydrocarbons
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Pulmonary edema

Pulmonary edema, 
death

Pulmonary edema

Pulmonary edema, 
death

Acute bronchitis

Pulmonary edema

Bronchial irri
tation, death

It

Bronchiolitis, 
reactivation 
of a duodenal 
ulcer

Pulmonary edema

Pulmonary edema, 
death

Acute bronchitis 
and delirium 
Pulmonary edema 
and delirium

Pulmonary edema, 
death



IV. ENVIRONMENTAL DATA

Environmental Concentrations and Engineering Controls

Reports of workroom air levels of phosgene in industrial processes 

utilizing phosgene as a starting material have not been published in the 

United States. In contrast, the formation of phosgene by decomposition of 

chlorinated hydrocarbons and the resulting occupational exposures have been 

extensively studied. In evaluating ventilation plans for the control of 

phosgene in a plant conducting "phosgenation," the Bureau of Engineering 

Safety, Department of Labor and Industry, State of New Jersey, [24] 

reported briefly on workroom air concentrations of phosgene. Air sampling 

in the breathing zones of chemical operators during routine phosgenations 

showed concentrations of phosgene "well within the TLV of 0.1 ppm" at the 

time of this investigation. Details of the sampling and analysis 

procedures were not given, nor were individual sampling results reported. 

Although management had filed plans for canopy hoods over the reactors, the 

ventilation actually consisted of flexible ducts, 4 inches in diameter, to 

each kettle. Engineering controls did not conform to the applicable MCA 

Chemical Safety Data Sheet. [1] Over a 2-year period prior to this 

investigation, at least 6 employees had been acutely exposed to unknown 

concentrations of phosgene. [24] Four of these were not able to return to 

work the day after exposure. One death had occurred and was attributed to 

phosgene inhalation. No details were reported. After the fatality, the 

Bureau of Engineering Safety ordered all phosgene operations stopped 

because of deficient controls. Subsequently, management of the plant 

discontinued the use of phosgene.
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In 1962, Filatova et al [58] investigated health hazards occurring in 

the manufacture of diisocyanates utilizing phosgene as one of the raw 

materials. The authors commented favorably on the isolation of hazardous 

sections of the plant as a method of control. Local exhaust ventilation 

was utilized extensively. Ninety-one workroom air samples were taken and 

analyzed for phosgene by undescribed methods. Units of analytical results 

were not stated but are assumed to be mg/liter. Results showed phosgene 

concentrations ranging from a reported 0 to 0.013 mg/liter (0-3.25 ppm), 

with the most frequently observed concentrations ranging from a reported 0 

to 0.0004 mg/liter. Of the 91 samples, 31 were negative for phosgene. 

However, an unspecified number exceeded the Maximum Permissible 

Concentration (MPC) of 0.5 mg/cu m (0.125 ppm) during such operations as 

cleaning vats or distillation apparatus. Recommendations for control 

included mechanization of manual procedures, provision of independent 

ventilation systems for each floor, limiting the number of hoods for each 

system to 10-12, and providing an intake velocity of at least 1-1.5 

meters/second (197-296 feet/minute) for hoods with movable sash and 

louvers.

In 1966, Filatova [59] reported industrial hygiene evaluations of 

phosgene in the production of isocyanates. A continuous-flow method was 

used, involving the use of remote control equipment and the mechanization 

of unspecified operations, and so-called hermetization which was assumed to 

mean enclosure or sealing of equipment, particularly that operating under 

pressure. Under these conditions, 91% of air samples were below maximum 

permissible concentrations for phosgene. Filatova did not further reporf 

the results of air sampling.
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Also in 1966, Levina et al [36] reported on industrial hygiene 

problems and worker health in monuron production. Monuron was defined as 

3-(p-chlorophenyl)-l,1-dimethylurea and was used as an agricultural 

pesticide. Monuron was produced by the interaction of 

parachlorophenylisocyanate and dimethylamine. Synthesis of the isocyanate 

involved the use of phosgene. The authors criticized the plant layout 

because units using materials of high toxicity (eg, phosgene) were located 

throughout the general work area rather than being isolated. Local exhaust 

ventilation placed at sources of contaminant escape, in addition to general 

ventilation, provided some control. Makeup air inlets were considered by 

the authors [36] to be wrongly placed. Workroom air samples analyzed for 

phosgene (503 samples) showed concentrations commonly ranging from 1.0 to

2.0 mg/cu m (0.25-0.5 ppm). The maximum permissible concentration in 

Russia at that time was 0.5 mg/cu m (0.125 ppm). Most phosgene was 

released during disassembly and repair of pumps, which often became 

clogged. This operation, as well as repair of other phosgene equipment, 

the transmission of phosgene under pressure, and the taking of samples for 

quality control were carried out by workers wearing gas masks. Released 

phosgene was said to be neutralized with ammonia. Control recommendations 

included replacement of equipment with improved hermetically sealed pumps 

and revamping of the makeup air system to provide uniform air supply at low 

velocities. Mechanization of systems, relocation in areas removed from the 

general workrooms, and use of remote controls were also recommended.

In 1967, Levina and Kurando [38] described exposures to phosgene and 

other chemicals in the manufacture of isopropyl phenylcarbamate, used as a 

herbicide. Totally enclosed equipment kept under reduced pressure
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prevented the escape of toxic chemicals to a large degree. Equipment and 

connections were made of corrosion-resistant materials, with special 

attention to flanges and valves. Atmospheric pollution was prevented by 

trapping gases and returning them to process. However, where manual labor 

was substituted for mechanization or total enclosure, some gas escape was 

possible. Hazardous processes were separated, and ventilation was reported 

to be correctly designed and located. Makeup air was supplied. Phosgene 

was detected in 30% of all air samples taken; of the samples where phosgene 

was detected, the usual concentration was 0.5 mg/cu m (0.125 ppm), the 

maximum permissible concentration. Methods of sampling and analysis were 

not described. During operations such as quality control sampling, 

pressure transfer of phosgene, and pump repair, the concentration of 

phosgene in the workroom air was 1.0 mg/cu m (0.25 ppm). However, these 

concentrations were described as transient, because the premises were 

cleared by release of ammonia whenever the odor of phosgene became 

discernible. Gas masks were worn by personnel engaged in these tasks. 

Recommendations for further control included improved sealing of equipment, 

elimination of manual operations by maximum automation, use of protective 

clothing, and good personal hygiene.

Rispoli [60] reported 1 and 5 ppm phosgene in a plastics- 

manufacturing plant. No details of sampling or analysis were given, but 

ventilation was described as insufficient.

Reporting on 109 cases of phosgene inhalation over a 12-year period, 

Thiess and Goldmann [19] selected the 3 most severe cases for more detailed 

discussion. None of the exposures reported were long-term inhalation of 

low concentrations but were acute accidental exposures at relatively high
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concentrations. No determinations of workroom air concentrations were 

reported, but in 2 of the severe cases some assumptions and calculations 

were made which might have defined the exposure level involved.

One case described by Thiess and Goldmann [19] involved a worker 

removing brick lining, presumably saturated with phosgene, from a reaction 

vessel. The chemical process for which the reactor was constructed was the 

chlorination of aluminum oxide in the presence of carbon monoxide for the 

production of aluminum chloride. Phosgene was a byproduct of this 

reaction. Contrary to instructions, the brick lining was removed with a 

jackhammer from the inside of the furnace and without respiratory

protection. Instructions had been given to remove the brick from the

outside of the vessel and to wear respiratory protection. The exposure

lasted about 30 minutes, during which the worker was presumed to have

inhaled dust particles with adsorbed phosgene. Again, assumptions and 

calculations based on porosity measurements of the brick indicated that a

total volume of 2.5 liters was available for absorption of gas by the

lining material. This exposure terminated fatally. There is at least a 

suggestion that the effect of phosgene was enhanced because of its 

association with particulate matter, but this was not proved.

Unpublished data show that air concentrations of phosgene were

generally low in a chemical manufacturing unit where phosgene was used as a

raw material. (AF Myers, written communication, November 1974) Air samplers 

placed on operators showed concentrations on analysis ranging from 

nondetected to 0.08 mg/cu m. Samples taken in fixed locations ranged from 

nondetected to 0.52 mg/cu m. During the 2-month period of fixed location 

sampling, there were 5 instances of off-scale measurements (greater than
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0.55 mg/cu m) reportedly due to leaks. In summary, the workroom air 

measurements of phosgene in a manufacturing unit showed that, about 25% of 

the time, operators were exposed to very low but measurable concentrations 

of phosgene. Sampling procedures used did not determine individual peaks. 

Details of controls or of fixed sampling locations were not given. The 

plant surveyed was reportedly old and built with out-of-date technology.

The decomposition of chlorinated hydrocarbons by means of heat or 

ultraviolet radiation with the formation of phosgene has been blamed for a 

number of incidents involving respiratory tract damage in humans. 

[5,6,7,21,61,62,63,64, written communication from DR Parker, Oregon State 

Board of Health, November 1964] This has stimulated a great deal of 

investigation of the decomposition products formed when chlorinated 

hydrocarbons are exposed to ultraviolet radiation and heat, such as open 

flames and burning cigarettes. The following exemplify these 

investigations.

In 1933, the Underwriters Laboratories [65] reported the results of 

decomposition of a number of chlorinated hydrocarbons (ie, chloroform, 

carbon tetrachloride, a number of halocarbon compounds, dichloroethylene, 

methylene chloride, and others) exposed to gas flames, hot electric range 

units, oil fires, wood fires, and hot metal surfaces. The temperatures of 

these heat sources were not specified. Decomposition products were 

analyzed for hydrogen chloride, phosgene, chlorine, and others. The 

analytical method for phosgene involved the reaction of phosgene with 

aniline to form diphenylurea. The influence of relative humidity and 

initial concentration of chlorinated hydrocarbon was studied. The major 

decomposition product found was hydrogen chloride measured as total acids,
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which ranged from nondetected to 8.86 volume percent, followed by phosgene 

with concentrations ranging from a reported zero to 0.143 volume percent. 

Chlorine was found in the concentration range of a reported zero to 0.164 

volume percent.

In 1936, Yant et al [66] found significant quantities of phosgene in 

the decomposition products of carbon tetrachloride exposed to excelsior 

fires and heated steel surfaces. The analytical method used was based on 

the formation of diphenylurea which was found by Yant et al [66] and the 

Underwriters Laboratories [65] to be essentially free from interference by 

hydrogen chloride and chlorine. More recent research has shown that 

hydrogen chloride and chlorine do significantly interfere with the

diphenylurea analytical method. [67]

Elkins and Levine [68] investigated the decomposition of halogenated 

hydrocarbons when passed through burning cigarettes and cigars. Analytical 

methods used were for total chloride and therefore not specific for

phosgene. However, based on the small amounts of total chloride found in

the samples, the authors [68] concluded that phosgene was not a hazard when 

cigars or cigarettes were smoked in the presence of chlorinated hydrocarbon 

vapor.

In 1955, Little, [20] using the p-dimethylaminobenzaldehyde and

diphenylamine method, confirmed the conclusions of Elkins and Levine [68] 

that phosgene was not formed in sufficient quantities by smoking to present 

a hazard. He also found that various chlorinated hydrocarbons in contact 

with a heated silica tube did not produce significant quantities of 

phosgene below 400 C. Even in atmospheres containing small amounts of 

phosgene, finding no detectable phosgene in effluent gas from cigarettes
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led to the conclusion that, if any phosgene were formed, it was 

subsequently decomposed when passed through the combustion zone of the 

cigarette. It was also hypothesized that the phosgene was absorbed by the 

tar fraction of the tobacco combustion product.

Crummett and Stenger [69] found that, in contact with heated metals,

methyl chloroform (1,1,1-trichloroethane) produced relatively small amounts 

of phosgene, but much more hydrogen chloride than did carbon tetrachloride.

Dahlberg, [70,71] Dahlberg et al, [72] and Dahlberg and Myrin [73] 

extensively investigated the interaction of ultraviolet radiation with 

chlorinated hydrocarbons. These studies indicated that relatively lower 

amounts of phosgene were formed compared to the quantities of

dichloroacetyl chloride formed simultaneously. Although there have been no 

environmental limits recommended for dichloroacetyl chloride, it seems 

likely that it would be a strong irritant to skin and eyes. Actual 

measurements of decomposition products of trichloroethylene in welding 

shops confirmed their experimentally derived conclusions. In 10 welding 

shops under varying conditions of ventilation and trichloroethylene

concentration, phosgene was found in concentrations ranging from 0.003 to

3.0 ppm, while dichloroacetyl chloride concentrations ranged from less than 

0.01 to 13.0 ppm.

In a more recent investigation, Andersson et al [74] experimentally 

studied phosgene formation from perchloroethylene (PCE) during welding. 

Welding was carried out in a closed chamber, into which varying 

concentrations of PCE had been introduced by evaporation of the solvent in 

front of a fan. Analysis for both perchloroethylene and phosgene were done 

by gas chromatograph with an electron-capture detector. The authors
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concluded that welding in air containing PCE below its threshold limit 

value of 100 ppm was more hazardous than welding in air containing 

trichloroethylene or methy1-chloroform because of the much faster formation 

of phosgene from PCE. Levels of perchloroethylene ranged from 2.1 to 30 

ppm, while phosgene formed after 5 or 10 seconds ranged from 0.2 to 1.7 

ppm.

Noweir et al [75] found that, at very high temperatures, phosgene 

itself decomposes, perhaps accounting for concentrations lower than 

expected. However, phosgene decomposition was greatly reduced in the 

presence of carbon tetrachloride, indicating that, at least for this 

chlorinated hydrocarbon, phosgene formed by its decomposition should be 

relatively stable as long as some carbon tetrachloride remained.

A number of occupational exposures to decomposition products of 

chlorinated hydrocarbons have been reported. In 1947, Hill [64] briefly 

reported an investigation of complaints of workers exposed to fumes arising 

from a carbon arc-welding operation. A presumably adequate exhaust 

ventilation system existed, but the fumes causing the complaints were 

sometimes strong enough to be detected at some distance from the arc. The 

workers had not complained prior to the relocation of the operation to a 

room near a trichloroethylene degreaser. Qualitative tests indicated the 

presence of phosgene presumably caused by breakdown of trichloroethylene 

vapor by the ultraviolet radiation of the arc. It was recommended that the 

degreaser be replaced with alkaline wash equipment and that the use of 

chlorinated hydrocarbons in the welding room be prohibited.

Spolyar et al [5] investigated the circumstances causing the death of 

an employee who had installed a trichloroethylene degreaser and had
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operated it without the condensing coils functioning. A strong odor of 

solvent was present in the room when the employee's body was discovered. 

An investigation by the authors [5] took place 3 weeks later, disclosing 

the following:

(1) Trichloroethylene had been used in a degreaser designed for 

higher-boiling perchloroethylene, causing excessive loss of solvent.

(2) A fuel-oil-buming space heater was located in the degreaser 

room, and all windows and doors had been closed on the day of the accident.

(3) Under test conditions, 225-450 ppm trichloroethylene were 

found near the degreasing tank.

The trichloroethylene vapor passing through the firebox of the space 

heater could be decomposed with the possible formation of phosgene. A re

creation of the situation at the time of the accident, described in Effects 

on Humans, was undertaken, during which it was noted that one of the 

solvent heaters in the degreaser became red-hot. Samples taken at that 

time in the approximate location of an operator's breathing zone showed 

much higher levels of trichloroethylene and 15 ppm phosgene. The authors 

[5] suggested that the decomposition of the trichloroethylene was caused by 

the degreaser heating element rather than by the space heater, although a 

back pressure in the smoke pipe of the latter could occur under adverse 

weather conditions because of the configuration of the stack.

Although some effects due to trichloroethylene were apparent, the 

authors concluded that the cause of death was consistent with phosgene 

exposure.

In 1951, Wulfert [62] reported the results of an investigation of the 

manufacturing of hard metal drills (presumably with tungsten carbide drill
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inserts). Drills were washed in trichloroethylene after which the solvent 

was blown off with compressed air into the shop atmosphere prior to 

brazing. Brazing was completed with an induction coil or gas brazing, 

depending on the size of the drill. Results of workroom air sampling for 

phosgene were reported only as exceeding 1 ppm. The author [62] concluded 

that local exhaust ventilation was required.

An investigation of worker complaints was reported by Challen et al 

[76] in 1958. The workers involved were employed in a welding shop 

fabricating aluminum milk chums. Upper respiratory symptoms were thought 

to have been caused by phosgene from decomposition of trichloroethylene 

originating from a tank of the solvent located in an adjacent bay. Air 

samples were taken and analyzed for trichloroethylene, ozone, and phosgene. 

All phosgene samples contained less than 0.1 ppm, although the 

trichloroethylene concentrations ranged from a reported 0.0 to 238 ppm and 

the ozone concentrations ranged from 0.9 to 1.7 ppm. The authors [76] 

concluded that ozone rather than phosgene was the source of the complaints. 

Exhaust ventilation was installed in the degreasing shop and at the welding 

positions and operating procedures to prevent solvent drag-out were 

implemented, resulting in improved working conditions.

In a November 1964 letter from DR Parker to J Boyer, the Oregon State 

Board of Health reported finding a phosgene concentration in air of 4.86

mg/cu m (1.2 ppm) in the vicinity of welders who had complained of noxious

odors. Two other samples indicated no phosgene. Decomposition of 

perchloroethylene vapor from a recently installed degreaser was considered 

to be the source of the phosgene. The perchloroethylene concentration on

the day of the high phosgene sample was as much as 37 ppm. Remedial
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recommendations included relocation and isolation of the degreaser from the 

welding area. A ventilated booth was suggested for this purpose.

In summary, the earlier experimental studies [65,66] clearly indicate 

phosgene produced by decomposition of chlorinated hydrocarbons could 

present a hazard; there are cases that clearly show phosgene present in 

sufficient quantity to be a health hazard. [5,65,66] It should be noted 

that the various methods of heating, different temperatures used when 

producing the chlorinated hydrocarbon decomposition products, and the 

different analytical methods probably accounted for much of the variation 

from study to study.

Sampling and Analytical Methods

Detection methods for phosgene prior to the mid-1950's met minimal 

demands for sensitivity and detection limits. Soon after this, however, 

large-scale industrial use of the gas in polymer manufacturing processes 

prompted increased emphasis on potential industrial hygiene problems 

associated with its use. Linch et al [77] reviewed most of the analytical 

methods for phosgene used prior to 1965 and classified them into (1) 

physical measurement, (2) determination of chloride ion after hydrolysis,

(3) iodometric procedures, (4) gravimetric procedures, and (5) colorimetric 

procedures.

Physical measurements were based on the olfactory or taste response 

imparted to tobacco smoke immediately after phosgene inhalation and was 

considered to be a very sensitive indicator [77] of the gas, although it 

suffered from the obvious disadvantage of depending on the exposed worker 

to determine his exposure.
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A method of analysis based upon chloride present after hydrolysis was 

reported [77,78] to depend on aqueous decomposition of phosgene in dilute 

alkali. Residual base was titrated or the chloride present was determined 

by the Volhard or the bichromate method; the hydrogen chloride gas produced 

upon hydrolysis could also be absorbed in ammoniacal silver nitrate and the 

resultant silver chloride determined gravimetrically. [79,80] However,

these procedures were susceptible to physiologically inert, acid-reacting, 

or chloride-producing components occurring simultaneously with the 

phosgene. [77]

Iodometric procedures in anhydrous acetone with thiosulfate titration 

suffered from inherent field limitations due to the anhydrous conditions 

necessary and evaporation of the volatile solvent. [77]

Gravimetric procedures included (1) a method based on insoluble 

diphenylurea derived from phosgene and aniline, but which was sensitive to 

halogen interferences [80] and limited to a lower detection threshold of 

about 10 ppm [77]; and (2) a modified Kjeldahl nitrogen analysis of the 

diphenylurea which offered little improvement.[77]

Review of colorimetric analytical methods [81,82,83,84] that were 

developed indicated that the most sensitive and specific detector was 4- 

(4'-nitrobenzyl)pyridine (NBP) plus N-benzylaniline although it did not 

readily lend itself to a liquid reagent system. Later investigators [85] 

developed a method using diethylphthalate as an absorber with NBP and N- 

benzylaniline and easily determined phosgene at concentrations less than 

0.1 ppm in air. Spot tests have been described [77,79,81] for phosgene 

which generally rely on colored complex formation between heavy metals and 

diphenylcarbazones.
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Various detector papers and treated crayons have been described for 

determination of phosgene [86,87,88,89] with the most sensitive prepared 

from a benzene solution of 2% 4-(4*-nitrobenzyl)pyridine, 5% N-

phenylbenzylamine, and a chalk matrix which was then dried and pressed into 

crayons and was capable of detecting 8 ppb phosgene in air after a 1-minute 

exposure. All of the crayon and detector paper methods suffer sensitivity 

loss from storage; color change sensitivity to oxygen, chlorine, hydrogen 

chloride, and daylight; and the inherent disadvantage of reliance on visual 

detection of small color differences. [88, 89]

Direct reading, colorimetric detector tubes are available for the 

measurement of phosgene. [1,2,90,91,92] They offer a quick and easy method 

of determining approximate quantities in the reported range of 0-50 ppm and 

of indicating the need for initiation of emergency procedures or for 

further, more accurate evaluation. Today, most detector tubes are of the 

"length of stain" type. A fixed volume of air is drawn through a glass 

tube containing a solid sorbent which reacts with phosgene. A color stain 

is produced which varies in length with the concentration measured. The 

length of stain is compared with a calibration chart provided by the 

manufacturer. Accuracy expected is only + 30%.

An ultraviolet technique was developed [93] which uses the absorption 

at 254.5 nm of 1,3-diphenylurea formed when phosgene reacts with aniline- 

saturated water. A later refinement of the technique [67] was made using 

an extraction step with a 1:1 solution of n-hexane and 1-pentanol. The 

latter method allowed detection of 0.01 ppm phosgene in air with a 30-liter 

air sample. Collection efficiency was only about 90%.
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A micromanometric method was described [94] which utilized 

measurement of gaseous reaction products resulting from hydrolysis of 

phosgene, but details as to sensitivity and specificity were lacking.

Gas chromatographic techniques provide the most specific and 

sensitive detection methods for phosgene. A silica gel column at 56.5 C 

with a hot wire detector was first used to detect phosgene in pyrolysis 

products on a semiquantitative basis. [95] The development of the electron 

capture detector for the gas chromatograph provided a high degree of 

specificity for phosgene. This detector was first tried [96] in 

conjunction with a dodecylphthalate column at 50 C with resultant 2% 

standard deviation and detection down to 1 ppb. The authors suggested that 

this method can possibly be used as the basis for an automatic, continuous 

monitoring system. A later refinement [97] used a column of "20% silicon 

oil DC 200" (probably silicone DC 200) on Chromosorb W at 25 C for 

detection from below 1 ppb to 0.1 ppm phosgene. Jeltes et al [98] 

confirmed detection below 0.005 ppm but pointed out inherent difficulties 

due to hydrolysis by trace amounts of moisture, leakage of transfer 

syringes, and problems in transporation and storage of the air samples. 

Basu et al [99] presented operational parameters, retention times, and 

response factors for gas mixtures including phosgene using a 3-column, 3- 

detector (thermal conductivity) gas chromatographic system with a resultant 

reproducibility represented by a ±1% standard deviation.

Although the gas chromatographic methods display excellent analytical 

capabilities, field use is hampered by the lack of an adequate personal 

sampling method. Recent investigations by Barrett et al [100] of a number 

of solid sorbents indicated that phosgene can be efficiently collected with

75



activated carbon, alumina, and porous glass, but no satisfactory desorption 

technique was found.

Methods have been reported for automatic or continuous monitoring of 

phosgene in air. [77,90,96,101,102,103, RW Miller, written communication, 

May 1975] The instrumentation requirements make the methods impractical 

for field use. In-plant applications may be possible but the lower limit 

of detection may be questionable.

One continuous-sensing instrument which has been found to be 

generally reliable below 0.1 ppm of phosgene is the Army's M8 portable 

alarm device for toxic chemical agents. It uses an electrochemical cell as 

the sensing unit and is designed to give a warning signal when the 

concentration of phosgene exceeds a certain value. The instrument is 

therefore not ideally suited for measurement of varying concentrations, but 

may well have some application as a monitoring or safety device. The 

device has been tested at concentrations of 0.074 ppm, 0.185 ppm, 0.443 

ppm, and 0.625 ppm. The response was found to be linear over this range. 

[ 100]

The method of choice for detection of phosgene in the workroom air 

should provide for a minimum limit of detection of less than 0.05 ppm, 

reasonable freedom from interference from commonly expected chemicals (see 

Appendix II) and should permit relatively easy sample collection. The 

method which best meets these requirements is described in an Analytical 

Guide by the American Industrial Hygiene Association [104] and is an 

improved nitrobenzylpyridine colorimetric method. It involves drawing air 

through a midget impinger containing 10 ml of a solution of 0.25% 4—(4'—

nitrobenzyl)pyridine and 0.5% N-phenylbenzylamine in diethylphthalate and
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measurement of the subsequent color development at 475 nm. Sampling

efficiency is at least 99%, [85,104] and the range 0.05-1.0 ppm can be

measured if a 25-minute sample at 1 liter/min is collected in 10 ml of

reagent. No statistically significant interferences were observed [85,104] 

from carbon tetrachloride, chloroform, perchloroethylene,

trichloroethylene, dichlorodifluoromethane, chlorine, hydrogen chloride, or 

chlorine dioxide. Color stability is good (only 10-15% loss in color

density after 8 hours), sampling and analysis equipment needed is simple 

and readily available, and operator expertise required is minimal.
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V. DEVELOPMENT OF STANDARD

Basis for Previous Standards

In 1940, Bowditch et al [105] listed a maximum concentration of 1 ppm 

(4 mg/cu m) phosgene which was in effect in Massachusetts as a guide to 

manufacturers interested in maintaining satisfactory working conditions. 

In 1945, Cook [106] compiled a list of maximum allowable concentrations 

(MAC) of industrial atmospheric contaminants. Cook noted that 1 ppm (4 

mg/cu m) was the MAC value for exposure to phosgene in the workroom air 

adopted by California, Connecticut, New York, Oregon, Utah, and the US 

Public Health Service. Cook referred to Fieldner et al [107] and Flury and 

Zernik [108] as a basis for the accepted value of 1 ppm (4 mg/cu m). 

Fieldner et al [107] indicated that 3 ppm of phosgene in air was irritating 

to the throat. Flury and Zernik [108] indicated that 1 ppm was the highest 

tolerable amount in man, with 1.25-2.5 ppm termed as dangerous to life if 

the exposure was prolonged.

In 1947, Bloomfield [109] reviewed the efforts of a committee within 

the American Conference of Governmental Industrial Hygienists to develop an 

MAC which could be adopted by all the states. Bloomfield [109] cited 

unanimous agreement on a phosgene MAC value of 1 ppm (4 mg/cu m) among 23 

respondents.

In 1947, the American Conference of Governmental Industrial 

Hygienists [110] adopted an MAC value for phosgene of 1 ppm (4 mg/cu m). 

It was not stated if this MAC was intended as a ceiling value or as a TWA 

concentration. The April 1948 meeting of this same organization [111] 

adopted 1 ppm as a recommended limit and changed the name to Threshold 

Limit Values (TLV's).
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The TLV of 1 ppm was considered "sufficiently low to cause no more 

than minimal effects" by the ACGIH according to the 1962 Documentation of 

the Threshold Limit Values. [112] The Documentation [112] cited Fieldner 

et al [107] and Henderson and Haggard [113] to explain its selection of a 

TLV of 1 ppm (4 mg/cu m) for phosgene. Fieldner et al [107] reported that 

the Chemical Warfare Service at the American University Experiment Station, 

Washington, DC, considered 1 ppm of phosgene (4 mg/cu m) the maximal 

concentration safe for prolonged exposure. Henderson and Haggard, [113] in 

their review on phosgene, referred to Fieldner et al [107] and listed 1 ppm 

(4 mg/cu m) or less as a maximum concentration allowable for prolonged 

exposure. Both sources listed 3 ppm as the concentration at which throat 

irritation first occurs. The Documentation did not quote any other 

experimental or occupational data to support its recommended TLV.

A change to 0.1 ppm (0.4 mg/cu m) was proposed by the ACGIH in 1964 

[114] and 1965 [115] and adopted in 1966. [116] A TLV of 0.1 ppm (0.4 

mg/cu m) was supported in the 1966 Documentation [117] because of the 

"seriousness of the response at the experienced levels of phosgene and by 

analogy with edemagenic agents of similar activity." The Documentation 

cited Gross et al [42] who wrote that phosgene, which could produce fatal 

pulmonary edema or acute chemical pneumonia at a high concentration, could 

also produce chronic pneumonitis at a low concentration. Gross et al 

suggested that the chronic pneumonitis is reversible even though residual 

pneumonitis could be found three months later. [42] The alveolar 

epithelium in rats can become irritated after a single 120-minute phosgene 

exposure at 0.5 ppm. [42] Studies by Box and Cullumbine [40] indicated that 

preliminary nonlethal doses of phosgene produced a transitory effect of
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increasing tolerance to the gas. It was necessary to damage the lungs of 

rats and mice to produce this effect. Stokinger et al [118] reported 

chronic lung injury of small animals after repeated exposure to ozone. 

They stated that this is a separate process from the development of 

tolerance to subsequent acute exposure. In reviewing Stokinger’s article, 

[118] the Documentation [117] stated that "the development of tolerance, 

however, is believed to be the triggering mechanism of chronic, 

irreversible pulmonary changes of emphysema and fibrosis from prolonged 

daily exposure at concentrations that produce no ostensible acute 

response." The Documentation [117] assumed that both ozone and phosgene 

caused pulmonary edema.

The 1971 Documentation [119] was the same as the 1966 Documentation 

[117] with a few minor style changes and one additional sentence listing a 

recommendation for the USSR (1959) of 0.1 ppm and mentioning Elkins, [120] 

who recommended 0.5 ppm. There was no discussion of the additional 

recommendations nor were any new references cited in the bibliography. In 

1974, it was recommended [121] that the TLV of 0.1 ppm be changed to a 

ceiling concentration of 0.05 ppm (0.2 mg/cu m). Documentation for this 

change was published in the 1974 ACGIH Transactions [122] and refers to 

Stokinger's article on ozone toxicity studies [118] which indicated that 

there were chronic, irreversible pulmonary changes from prolonged daily 

exposure even though there was no acute response. None of the references 

cited specifically supported the ceiling limit of 0.05 ppm (0.2 mg/cu m) 

which was recommended because of the irritating effect of phosgene on the 

respiratory tract.
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In 1971, Pennsylvania [123] adopted an environmental limit of 0.1 ppm 

(0.4 mg/cu m) for phosgene. It was a maximum average atmospheric 

concentration for an 8-hour day. A short-term maximum average exposure 

limit of 1 ppm (4 mg/cu m) for 5 minutes was established. Henderson and 

Haggard, [124] Imperial Chemical Industry, and Patty [125] were cited as 

the basis for the short-term limit in the Pennsylvania documentation. [126]

Phosgene is suspected to be formed by the decomposition of 

fluorochlorocarbons in submarine atmospheres. Webb [127] listed a maximum 

limit of 0.1 ppm (0.4 mg/cu m) exposure for a 90-day dive. He reported 

that an interim limit of 1 ppm (4 mg/cu m) for a 1-hour exposure was 

recommended by the Navy's Bureau of Medicine and Surgery. The limit was for 

a single exposure and not a permissible limit for repeated short-term 

exposures.

A safe concentration zone of 0.4-0.5 mg/cu m (0.1 ppm to 0.125 ppm) 

was recommended for international adoption in 1968 by the Joint ILO/WHO 

Committee on Occupational Health. [128] The Joint ILO/WHO Committee [129] 

prepared a survey of legislation and practices concerning permissible 

limits and listed MAC values for the following foreign countries:
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TABLE V-l

MAXIMUM ALLOWABLE CONCENTRATION VALUES IN SEVERAL COUNTRIES

Country Standard

mg/cu m ppm

Bulgaria 0.5 0.125

Czechoslovakia 2 0.5

Czechoslovakia 4* 1*

Finland 4 1

Hungary 0.5 0.125

Poland 0.5 0.125

Rumania 0.5 0.125

United Arab Republic 4 1

Yugoslavia 0.4 0.1

* for short single exposure 

From reference 129

The USSR [37] cited a permissible phosgene concentration of 0.5 mg/cu

m (0.125 ppm) as established by the Main State Health Inspector of the USSR

on January 10, 1959, No 279-59. If workers are in an industrial area for a

brief, unspecified period, deviations are permitted with the authorization

of the USSR State Health Inspectorate.
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Great Britain, [130] Japan, [131] and the Federal Republic of Germany 

[132] based their environmental limits for phosgene of 0.1 ppm (0.4 mg/cu 

m) on the ACGIH value. These environmental limits were TWA concentrations 

for a normal working day.

The present federal standard (29 CFR 1910.1000) for phosgene is an 8- 

hour TWA concentration of 0.1 ppm (0.4 mg/cu m) based on the 1968 ACGIH 

recommendation.

Basis for the Recommended Environmental Standard

At the present time, there are no definitive data in the scientific 

literature concerned with long-term effects of phosgene on humans exposed 

at low concentrations. Human exposure to phosgene reported in the 

literature (see Table III-5), for the most part, consists of instances of 

acute overexposure, often involving a mixture of pulmonary irritants. 

Those epidemiologic studies [36, AF Myers, written communication, November 

1974] involving exposures at low levels of phosgene suffer from a number of 

defects, including exposures to multiple irritants and limited analytical 

or medical data. In spite of the weaknesses noted, these studies are at 

least suggestive that the present federal standard is safe for long-term 

exposures. Therefore, until more conclusive evidence is developed, NIOSH 

recommends that the present federal standard of 0.1 ppm as a TWA 

concentration be maintained.

In addition, since phosgene is an acute-acting, irritant gas, it is 

essential to control the short-term excursions above this average. Animal 

experiments have demonstrated a threshold for the development of pulmonary 

lesions after short-term exposure to phosgene. Gross et al [42] reported
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that exposure of rats to phosgene at a concentration of 3 ppm for 5 minutes 

resulted in slight to moderate chronic pneumonitis, while rats exposed at

1.3-1.5 ppm for 10 minutes showed no evidence of recognizable pulmonary 

lesions. Similarly, rat experiments conducted by Rinehart and Hatch [41] 

revealed that exposures to phosgene at a concentration of 1.5 ppm for 20 

minutes or less did not result in any evidence of functional respiratory

impairment as measured by carbon monoxide or ether uptake. In both

studies, [41,42] deleterious effects were found at the lowest concentration 

used, 0.5 ppm, when duration of exposure was 120 minutes or greater.

Although no data are available to substantiate the pulmonary effects of

brief exposures to phosgene at low concentrations in humans, these studies 

suggest that a single exposure of 10-15 minutes' duration at concentrations 

of or below 1.5 ppm are likely to be safe. It is felt, however, that 

imposing further limitations on the degree of excursion permitted during a 

10-hour workday will provide an additional margin of safety to ensure 

protection of the worker from the consequences of brief exposures to 

concentrations of phosgene above the recommended TWA limit. NIOSH is 

therefore proposing a ceiling limit of 0.2 ppm for any 15-minute period.

In view of the development of pulmonary edema and evidence of chronic 

lung changes as a result of exposure to phosgene, medical monitoring, 

including chest X-rays and pulmonary function tests, is required for the 

protection of the worker.

Professional judgment indicates that local contact with liquid 

phosgene is likely to cause severe tissue damage which could in part be due 

to the low temperature of liquid phosgene. Thus skin and eye protection, 

in addition to respiratory protection, is recommended for those likely to 

be in contact with liquid phosgene.
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It is recognized that many workers are exposed to phosgene at 

concentrations considerably below the recommended occupational limits. 

Under these conditions, it should not be necessary to comply with many of 

the provisions of this recommended standard. However, concern for worker 

health requires that protective measures be instituted below the 

enforceable limits to ensure that exposures do not exceed the standard. 

For this reason, "occupational exposure to phosgene" has been defined as 

exposure above half the recommended TWA, thereby delineating those work 

situations which do not require the installation of unnecessary controls 

and the expenditure of health resources for provisions such as 

environmental and medical monitoring and associated recordkeeping.
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VI. WORK PRACTICES

Strict adherence to stringent and detailed work practices is required 

if hazardous occupational exposures to phosgene are to be prevented. The 

properties of phosgene which determine to a large extent the nature of 

necessary work practices are: (a) the delayed and insidious onset of

symptoms due to exposure to low concentrations; (b) an odor threshold 

which cannot be relied upon to provide an adequate warning; and (c) its 

irritant effects on tissue, especially the lungs. However, precautions 

required in the handling and usage of phosgene have much in common with 

those required for other irritating gases. The work practices specified in 

this document are derived in large part from phosgene manufacturers' 

literature [10,133] and the Manufacturing Chemists' Association Chemical 

Safety Data Sheet SD-95. [1] In addition, work practices prescribed for 

other irritating gases have been adapted for phosgene wherever pertinent 

(eg, those published in the Chlorine Manual [134]).

Warning Properties

The American Industrial Hygiene Association [90] stated that the 

irritant properties of phosgene were insufficient to give warning of 

hazardous concentrations, and that olfactory fatigue caused personnel 

working with phosgene to lose their ability to detect low concentrations by 

smell. Supporting data for these statements were not reported.

The Manufacturing Chemists' Association [1] reported that the odor of 

phosgene can be recognized by some persons at 0.5 ppm, but that the sense 

of smell is conditioned by the gas so that the odor can only be detected
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briefly at the time of initial exposure. No substantiating data for these 

statements were cited, but many materials do have the ability to cause odor 

fatigue.

Leonardos et al [18] investigated the odor thresholds of 53 

chemicals. They defined the odor threshold as the first concentration at 

which all members of a trained panel could recognize the odor of a 

chemical. Their tests indicated an odor threshold for phosgene of 1.0 ppm. 

The odor was described as being "hay-like."

In 1938, Wells et al [17] determined threshold odor detection of 

phosgene in a number of volunteers. Test concentrations were established 

with a proportioning instrument known as an osmoscope. Three tests run on 

56 subjects showed that all subjects detected the odor of phosgene at or 

below 37.5 mg/cu m (9.4 ppm), 51.8% detected the odor of phosgene at or 

below 6.1 mg/cu m (1.5 ppm), and that none detected the odor below 1.8 

mg/cu m (0.45 ppm).

Macy, [135] summarizing the properties and the physiological action 

of phosgene, stated that the threshold of odor for phosgene was 4.4 mg/cu m 

(1.1 ppm). Substantiating data were not included in this report.

It is concluded that the odor of phosgene, when detected, indicates 

the need for immediate corrective action. However, an absence of odor 

cannot be relied upon to indicate that exposure does not exist.

Emergencies

Personnel who have escaped from an exposure to phosgene and have 

inhaled dangerous quantities should be kept warm but not overheated. If 

possible, they should not be allowed to walk from the scene of overexposure
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but should be carried. Exercise may intensify the effects of phosgene, but 

this has not been definitely established. In any case, physical activity 

should be limited to keep oxygen requirements at a minimum. Every effort 

must be made to treat the individual after overexposure occurs and to 

observe him for the onset of delayed symptoms. All facilities handling 

phosgene should have compressed, breathing-grade oxygen available. 

[1,2 , 10, 11]

Phosgene presents no fire or explosion hazard, but high temperatures 

may rupture containers because of increased hydrostatic pressure. [2] In 

case of fire, phosgene containers should be removed to a safe place or 

cooled with water if phosgene is not escaping. [1]

Spills are best controlled with solutions of caustic soda or with 

ammonia. It has been reported [1] that some manufacturers store one ton of 

ammonia for each ton of stored phosgene for the purpose of neutralizing 

liquid spills.

Control of Airborne Phosgene

Phosgene should be used only in completely closed systems. In 

addition, local exhaust and general ventilation can be effective for 

control at points of potential escape. [1,2,10,38,58,59,90] Discharges of 

ventilation systems or of leaking containers may be passed through 

scrubbers utilizing caustic soda, ammonia, or steam to prevent phosgene 

from reaching the outdoor atmosphere. [1,2,90,133]

The possibility of phosgene formation must be considered when 

installing and operating vapor degreasers containing chlorinated 

hydrocarbons, since under poor operating conditions, these are potential
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sources of phosgene. [5,74,136] They should be controlled to prevent 

exposure of operators to both solvent vapors and phosgene.

During maintenance operations on equipment in which phosgene has been 

present, there is a potential hazard of exposure to phosgene which is 

entrapped in the equipment or adsorbed on surfaces or in materials. 

Respiratory protection should be supplied to maintenance personnel working 

on equipment that has carried phosgene, unless it can be established that 

no phosgene is present.

Respiratory Protection

Neither chemical cartridge respirators nor half-face masks are 

recommended for protection against phosgene. [137] Canister-type gas masks 

are recommended only for rapid escape from a contaminated area because of 

the following limitations:

(1) Their useful life is unpredictable because of a number of 

variables such as breathing rate, ambient humidity, and contaminant 

concentration. [137]

(2) They cannot be used in atmospheres deficient in oxygen or 

containing phosgene in concentrations over 2.0% by volume. [137] Therefore, 

they are not suitable for controlling emergency exposures where the 

concentration of phosgene and the oxygen content of the air are unknown. 

[1]
(3) Users of gas masks have depended on the detection of an odor 

of the atmospheric contaminant to warn them of loss of protection by the 

canister or to indicate leaks. [1,137] However, phosgene has poor warning 

properties in low concentrations [1,90] and therefore the odor cannot be
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depended upon to indicate a faulty gas mask in time to prevent harm to the 

wearer.

Training in the use of respiratory protection is required by 29 CFR 

1910.134 and is stressed as an essential work practice in occupations 

involving potential exposure to phosgene. [1,138] Accordingly, a 

requirement for training is included in the standard. Recognition of the 

odor of phosgene should be a part of this training. [138]

Gas-mask canisters should be replaced immediately after each use, 

when the seal is broken, when any leakage is detected, when high breathing 

resistance develops, or when the recommended shelf life expires, whichever 

occurs first. [137]

Because of the irritant properties of phosgene, emergency respiratory 

protection must provide both eye and respiratory protection for the worker. 

Full-face masks are the only acceptable devices for employees exposed to 

phosgene leaks or for the protection of personnel who may be exposed to 

sudden high concentrations of phosgene. Masks connected to air lines or 

having a self-contained air or oxygen supply can also be used. Pocket- or 

mouthpiece-type respirators used for escape in some operations [137] are 

not recommended for that purpose.

Eye Protection

Liquid phosgene is probably a severe eye irritant, [11,139] as 

discussed in Chapter V. Protection should be provided against accidental 

splashes of the liquid. [90,108] Vapor concentrations of phosgene which 

are said to affect the eyes (1-10 ppm) are likely to affect the respiratory 

system as well. Accordingly, eye and respiratory protection should be 

combined by use of full-face respiratory protection.
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Skin Protection

Liquid phosgene is said to cause severe skin burns, [1,90,139] and 

although this point is inadequately documented, it is a likely effect as 

discussed in Chapter V. Skin exposure to liquid phosgene should be 

prevented by the use of impervious clothing and gloves. Clothing 

impregnated with phosgene should be removed immediately.

Leak Detection

Continuous monitoring of areas where phosgene exposure can occur is 

considered essential and should be required when suitable models are 

available. Such monitors should be attached to alarm systems which will 

indicate dangerous levels of phosgene. For monitoring purposes phosgene- 

indicating crayons have been used. [1,10,140] Phosgene detector tubes have 

been described, [1,2,90] as have test papers, [2,10,90] and commercially 

available automatic monitor-alarms. [90, RJ Zellner, written 

communication, November 1974] Holding a bottle of strong ammonia water 

near a phosgene leak will produce a visible white cloud. [1,2,10,133] 

However, this should not be done unless the worker is wearing a respirator.

Leak Control

When detected, leaks should be repaired immediately by personnel 

wearing the proper protective clothing and respiratory protection. Leak 

repair kits may be assembled [1] or are commercially available. [133] 

Routine inspection should be scheduled to check pumps, lines, and 

containers for leaks; this practice is especially important during 

maintenance operations.[36] Leaking containers should be positioned so that
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gas rather than liquid phosgene is discharged from the leak. [133] This 

results in less discharge of phosgene and the escaping gas cools the 

remaining phosgene, thus reducing pressure and leakage. Introducing 

moisture into phosgene can cause increased pressures sufficient to rupture 

containers [10,11] or can cause leaks through corrosion. [10,11]
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VII. RESEARCH NEEDS

Long-term epidemiologic studies of worker populations exposed at or 

below the recommended environmental limits are needed. Such studies should 

consider not only the pulmonary effects but also the possible carcinogenic 

effect of phosgene. As a minimum, these studies should include 

environmental air measurements, medical histories, pulmonary function 

studies, histories of known or suspected acute exposures to phosgene, and 

comparisons with morbidity and mortality information for the general 

population.

Animal studies should be conducted to document pulmonary or other 

changes resulting from exposure at low levels of phosgene for extended 

periods. These studies should also address the issues of carcinogenicity, 

mutagenicity, and teratogenicity.

A sampling and analytical method for personal monitoring capable of 

detecting 0.05 ppm or less of phosgene should be developed. The accuracy, 

sensitivity, and applicability of the method to field situations should be 

demonstrated by a program of field and laboratory testing.

Existing methods for automatic, continuous monitoring should be 

tested for sensitivity, accuracy, and specificity by comparison with a 

reliable standard method. Since one of the primary functions of automatic, 

continuous monitoring is as a warning device, alarm systems should be 

developed and tested for reliability.
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IX. APPENDIX I 

AIR SAMPLING PRACTICES FOR PHOSGENE

General Requirements
i r

Air concentrations shall be determined within the worker's breathing 

zone and shall meet the following criteria in order to evaluate conformance 

with the standard:

(a) Samples collected shall be representative of the individual 

worker's exposure.

(b) Sample data sheets shall include:

(1) The date and time of sample collection.

(2) Sampling duration.

(3) Volumetric flowrate of sampling.

(4) A description of the sampling location.

(5) Sampling temperature and pressure.

(6) Other pertinent information.

Breathing Zone Sampling

(a) To ensure that a sample is representative of a worker's

exposure, collection shall be as near the worker's breathing zone as 

practical. Sampling should not hamper the typical movement patterns

associated with his work.

(b) A portable, battery-operated, personal sampling pump, and a 

midget impinger containing 10-20 ml of a solution of 0.25% 4—(A'— 

nitrobenzyl)pyridine and 0.5% N-phenylbenzylamine in diethylphthalate are 
used to collect the sample.
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(c) The sampling rate shall be 0.5-1.0 liter/minute and samples 

shall be taken for a time period appropriate to the estimated concentration 

of phosgene in the air (eg, at the recommended environmental limit, 0.1 ppm

phosgene in air, a flowrate of 1 liter/minute, and a sample time of 25

minutes, 10 jug of phosgene can be collected in 10 ml of sampling reagent.)

(d) A series of short-term samples shall be taken for each TWA.

The number of TWA's shall be in compliance with Table 1-2 for each 

operation.

The TWA may be determined as follows:

TWA = Cltl + C2t2 + ...+ Cntn
T

where C = phosgene concentration during any period of time t 
T = tl + t2 +...+ tn

Sampling times should be selected so that the calculated TWA is

representative of the full 8-10 hour workshift.

Calibration of Sampling Trains

Since the accuracy of an analysis can be no greater than the accuracy 

of the volume of air which is measured, the accurate calibration of a 

sampling pump is essential to the correct interpretation of the pump's 

indicated flow rate. The frequency of calibration should be dependent on 

the use, care, and handling to which the pump is subjected. In addition, 

the pump should be recalibrated if it has been subjected to misuse, or if 

it has just been repaired or received from a manufacturer. If it receives 

hard usage, more frequent calibration may be necessary.
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Ordinarily, pumps should be calibrated in the laboratory both before 

they are used in the field and after they have been used to collect a large 

number of field samples. The accuracy of calibration is dependent on the 

type of ainstrument used as a reference. The choice of calibration 

instrument will depend largely upon where the calibration is to be 

performed. For laboratory testing, primary standards, such as a spirometer 

or soapbubble meter, are recommended although other standard calibrating 

instruments, such as a wet-test meter, or dry-gas meter, can be used. The 

actual setups will be similar for all instruments.

Instructions for calibration with the soapbubble meter follow. If 

another calibration device is selected, equivalent procedures should be 

used. The calibration setup for personal sampling pumps with a midget

impinger is shown in Figure XIII-1.

(a) Check the voltage of the pump battery with a voltmeter to

assure adequate voltage for calibration. Charge the battery if necessary.

(b) Assemble the midget impinger with the appropriate solution.

(c) Assemble the sampling train as shown in Figure XIII-1. If a 

prescrubber is used to remove interferents, the sampling train should be 

assembled with the prescrubber in line with the midget impinger.

(d) Turn the pump on and moisten the inside of the soapbubble

meter by immersing the buret in the soap solution and drawing bubbles up 

the inside until they are able to travel the entire buret length without 

bursting.

(e) Adjust the pump rotameter to provide a flowrate of 1

liter/minute.
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(f) Check the water manometer to ensure that the pressure drop 

across the sampling train does not exceed 13 inches of water (approximately 

1 inch of mercury).

(g) Start a soapbubble up the buret and, with a stopwatch, measure 

the time it takes the bubble to move from one calibration mark to another. 

For a 1000-ml buret, a convenient calibration volume is 500 ml.

(h) Repeat the procedure in (g) above at least twice, average the 

results, and calculate the flowrate by dividing the volume between the 

preselected marks by the time required for the soapbubble to traverse the 

distance.

(i) Data for the calibration includes the volume measured, elapsed 

time, pressure drop, air temperature, atmospheric pressure, humidity, 

serial number of the pump, date, and name of the person performing the 

calibration.
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X. APPENDIX II 

ANALYTICAL METHOD FOR PHOSGENE

Principle of the Method

(a) A known volume of air is drawn through a solution of 0.25% 4-

(4'-nitrobenzyl)pyridine and 0.5% N-phenylbenzylamine in diethylphthalate 

contained in a midget impinger. Phosgene present reacts with the solution 

to produce a brilliant red color.

(b) The absorbance of the sample solution is determined at 475 nm

using a colorimeter or spectrophotometer.

(c) Comparison of sample absorbance with a standard curve allows 

quantitation of phosgene present.

Range and Sensitivity

(a) The lower limit of detection is 5 jug phosgene in the sample.

(b) The upper limit of the method may be varied, according to

sample requirements, by appropriate adjustment of the usual sampling 

parameters (ie, sample time, solution volume, and flow rate).

(c) The 95% confidence limits for 10 degrees of freedom are ±0.007

mg at the 0.017-mg level, and ±0.003 mg at the 0.10-mg level. The 

precision was determined by repeated analyses by the same technician. 

Rather than air sampling in the field, the precision was determined by 

analyzing known amounts of phosgene using the same technique as the

calibration procedure.
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Interference

Other acid chlorides, alkyl and aryl derivatives which are sub

stituted by active halogen atoms and sulfate esters will produce color with 

this reagent. However, most of these interferents can be removed in a pre

scrubber containing 1,l,2-trichloro-l,2,2-trifluoroethane if necessary. 

[104] The method is not subject to interference from carbon tetrachloride, 

chloroform, perchloroethylene, trichloroethylene, dichlorodifluoromethane, 

chlorine, hydrogen chloride, or chlorine dioxide. [85,104]

Color Stability

The red color formed is stable for at least 4 hours and should be 

measured within 9 hours; a color density loss of 10-15% can be expected 

after 8 hours. A slight decrease in color density may be expected if 

sampling is performed during high humidity (eg, 11% decrease at 73% 

relative humidity). [104]

Efficiency

Sampling efficiency is 99% or better. Evaporation losses are 

negligible. [85,104]

Advantages of the Method

(a) High collection efficiency.

(b) High specificity for phosgene in most likely sample environ

ments.

(c) No elaborate equipment needed.
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(d) Minimal technical expertise required for sampling and analysis.

(e) Relative ease of personal sampling.

Disadvantages of the Method

(a) Potential spillage of liquid sampling solution.

(b) Potential breakage of glass sampling equipment.

(c) Sample color instability on standing.

(d) Color density decreased by high relative humidity.

Apparatus

(a) Sampling

(1) Portable, battery-operated, personal sampling pump.

(2) Midget impinger.

(3) Flexible plastic tubing as appropriate.

(b) Analysis

(1) Glassware as required for reagent measurement.

(2) Colorimetric spectrophotometer capable of absorbance

measurements at 475 nm.

(3) Spectrophotometer cells (cuvettes).

(c) Calibration

(1) Pressurized cylinder of phosgene gas.

(2) Pressure regulator.

(3) Flow meter.

(4) Appurtenant equipment for gas dilution methods or 

a midget impinger.

(5) Gas drying tubes.
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Reagents

All reagents are ACS Reagent Grade.

(a) 4-(4'-nitrobenzyl) pyridine/N-phenyl benzylamine absorbing

solution: Dissolve 0.25 g 4-(4'-nitrobenzyl)pyridine and 0.5 g N-

phenylbenzylamine (may also be called N-benzylaniline) in 100 ml 

diethylphthalate. Store in an amber bottle.

(b) Gas purifying reagent: Approximately 50% anhydrous sodium

iodide and 50% sodium thiosulfate, by weight.

(c) Diethylphthalate.

Standards

Method A: Use commercially available compressed phosgene gas (99.0%)

to bubble known amounts of the gas through a midget bubbler containing the 

absorbing solution. Measure with a spectrophotometer (475 nm) the color 

developed to establish a standard curve. It has been recommended [141] 

that the phosgene be passed through a drying tube filled with a mixture of 

anhydrous sodium iodide/sodium thiosulfate prior to bubbling.

Method B: Pass the compressed phosgene gas through a tube containing

anhydrous sodium iodide/sodium thiosulfate and into a glass bubbler 

containing diethylphthalate solution with excess normal alcoholic sodium 

hydroxide solution. Analyze for chloride by any of the standard 

titrametric methods. [142,143] Use demineralized water for this analysis. 

Dilute aliquots of phosgene-containing diethylphthalate with additional 

diethylphthalate to prepare a series of samples of known concentration 

(based on chloride analyses). To each sample add an equal volume of
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double-strength absorbing solution (0,5% 4-(4'-nitrobenzyl) pyridine and 

1.0% N-phenylbenzlamine in diethylphthalate). Mix and measure the 

absorbance (475 nm) after 5 minutes.

Analysis

Transfer an aliquot of the phosgene-containing absorbing solution to 

a spectrophotometer cuvette and measure the absorbance at 475 nm against a 

blank of the pure reagent. Determine the phosgene concentration from a 

calibration curve suitable for the specific volume of reagent used and the 

volume of air sampled.

Standard Curve Preparation

Using linear graph paper, plot absorbance readings on the ordinate 

(vertical axis) and phosgene concentration on the abscissa (horizontal 

axis). Standard phosgene concentrations are prepared by Method A or Method 

B above.
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XI. APPENDIX III 

PHOSGENE MONITORS

Whenever phosgene may be released or created as a result of leaks, 

accidents, etc, in quantities sufficient to produce exposures above the 

recommended ceiling concentration limit, it is essential that phosgene 

monitoring devices be installed, and that these devices give immediate 

warning of concentrations likely to be hazardous to life or health. It is 

difficult to define the limiting circumstances when such devices may be 

required, but if reasonable doubt exists, the decision should be made by a 

professional industrial hygienist. Monitoring devices may be based upon 

several operating principles, and at least one is currently (1976) 

commercially available. No matter what device is used, certain criteria 

common to phosgene monitors should be considered before purchasing any 

instrument.

Summary of Specifications

(a) The monitoring device must sound an alarm or otherwise warn

employees whenever a phosgene concentration of 0.2 ppm is reached or 

exceeded.

(b) The monitoring device must have a response time of 90 seconds

or less when exposed to phosgene at a concentration of 0.2 ppm.

(c) Zero drift should be less than 1% of full scale reading in 24 

hours. That portion of the signal manifested as background noise should be 

less than plus or minus 1% of full scale reading.
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(d) The monitoring device must be accurate to within plus or minus

10% of the reading for the range of 0.05-0.4 ppm phosgene.

(e) Precision and repeatability must be plus or minus 5% of full 

scale reading.

(f) It is desirable that the instrument respond only to phosgene,

but devices which respond to other gases not normally present in the 

atmosphere may be acceptable. Whenever there is a possibility that gases 

or vapors, such as hydrogen chloride, chlorine, benzoyl chloride, acetyl 

chloride, and oxalyl chloride, may be present, it would be desirable to 

determine in advance the response of the instrument to such gases or 

vapors.

(g) An operating range of 0-0.4 ppm phosgene is recommended, but

other ranges may be selected to suit individual needs.

(h) The device should be capable of 168 hours of continuous,

unattended operation.

(i) The device and alarm should be intrinsically safe for use in

locations where explosion hazards may occur.

Discussion

The principal requirements for such monitors in addition to 

responding to phosgene gas are that they be sufficiently rugged to 

withstand pressure, vibration, normal extremes of temperature, etc, and not 

be susceptible to plugging or interferences due to contaminants likely to 

be encountered in most workplaces. They should be so constructed that it 

is possible to routinely and quickly check the zero setting of the 

instrument and the response to phosgene at 0.2 ppm. T.t is permissible to
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perform such checks by electrical means, but at least once each month 

instruments should be checked with a known concentration of 0.2 ppm 

phosgene in air.

Pressurized cylinders containing phosgene in nitrogen are 

commercially available. According to the National Bureau of Standards, 

[144] phosgene concentrations in cylinders are stable up to at least 3 

months if the nitrogen originally put in the cylinder was very dry. In 

order to avoid the problems of degradation of the phosgene in the cylinder, 

it is recommended that phosgene at concentrations of 50-100 ppm in nitrogen

be obtained and then diluted to the selected check concentration, ie, 0.2

ppm, as needed. This new concentration should be verified by the

analytical procedure in Appendix II. Permeation tubes can also be used for 

generation of phosgene at known concentrations, but this requires a 

temperature-controlled manifold. A single calibration point at 0.2 ppm can 

be checked to determine whether the instrument has maintained its 

calibration. If the reading differs by more than 0.02 ppm from the

previous calibration, then several other calibration points over the useful 

range of the instrument should be checked and a new calibration 

established. If the monitor is off by more than 0.02 ppm, the other 

variables should be checked, eg, flow rate, electronics, detection media.

In large plants, where there are considerable distances between work 

stations, additional monitors may be required to ensure worker safety. 

Alternately, a multipoint sampling system bringing sampled air to a single 

instrument may be satisfactory.
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XII. APPENDIX IV 

MATERIAL SAFETY DATA SHEET

The following items of information which are applicable to a specific 

product or material shall be provided in the appropriate block of the 

Material Safety Data Sheet (MSDS).

The product designation is inserted in the block in the upper left 

corner of the first page to facilitate filing and retrieval. Print in 

upper case letters as large as possible. It should be printed to read 

upright with the sheet turned sideways. The product designation is that 

name or code designation which appears on the label, or by which the 

product is sold or known by employees. The relative numerical hazard 

ratings and key statements are those determined by the rules in Chapter V, 

Part B, of the NIOSH publication, An Identification System for 

Occupationally Hazardous Materials. The company identification may be 

printed in the upper right comer if desired.

(a) Section I. Product Identification

The manufacturer's name, address, and regular and emergency telephone 

numbers (including area code) are inserted in the appropriate blocks of 

this section. The company listed should be a source of detailed backup 

information on the hazards of the material(s) covered by the MSDS. The 

listing of suppliers or wholesale distributors is discouraged. The trade 

name should be the product designation or common name associated with the 

material. The synonyms are those commonly used for the product, especially 

formal chemical nomenclature. Every known chemical designation or 
competitor's trade name need not be listed.

117



(b) Section II. Hazardous Ingredients

The "materials" listed in this section shall be those substances

which are part of the hazardous product covered by the MSDS and

individually meet any of the criteria defining a hazardous material. Thus,

one component of a multicomponent product might be listed because of its 

toxicity, another component because of its flammability, while a third 

component could be included both for its toxicity and its reactivity. Note 

that a MSDS for a single component product must have the name of the 

material repeated in this section to avoid giving the impression that there 

are no hazardous ingredients.

Chemical substances should be listed according to their complete name 

derived from a recognized system of nomenclature. Avoid using common names 

and general class names such as "aromatic amine," "safety solvent," or 

"aliphatic hydrocarbon" when the specific name is known.

The "%" may be the approximate percentage by weight or volume 

(indicate basis) which each hazardous ingredient of the mixture bears to 

the whole mixture. This may be indicated as a range or maximum amount, 

(ie, "10-40% vol" or "10% max wt") to avoid disclosure of trade secrets.

Toxic hazard data shall be stated in terms of concentration, mode of 

exposure or test, and animal used, ie, "100 ppm LC50-rat," "25 mg/kg LD50- 

skin-rabbit," "75 ppm LC man," or "permissible exposure from 29 CFR 

1910.1000," or, if not available, from other sources of publications such 

as the American Conference of Governmental Industrial Hygienists or the 

American National Standards Institute Inc. Flammable or reactive data 

could be flash point, shock sensitivity, or other brief data indicating 

nature of the hazard.
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(c) Section III. Physical Data

The data in this section should be for the total mixture and should 

include the boiling point and melting point in degrees Fahrenheit (Celsius 

in parentheses); vapor pressure, in conventional millimeters of mercury

(mmHg); vapor density of gas or vapor (air = 1); solubility in water, in

parts/hundred parts of water by weight; specific gravity (water = 1);

percent volatiles (indicated if by weight or volume) at 70 degrees 

Fahrenheit (21.1 degrees Celsius); evaporation rate for liquids or 

sublimable solids, relative to butyl acetate; and appearance and odor. 

These data are useful for the control of toxic substances. Boiling point, 

vapor density, percent volatiles, vapor pressure, and evaporation are 

useful for designing proper ventilation equipment. This information is 

also useful for design and deployment of adequate fire and spill 

containment equipment. The appearance and odor may facilitate

identification of substances stored in improperly marked containers, or 

when spilled.

(d) Section IV. Fire and Explosion Data

This section should contain complete fire and explosion data for the 

product, including flash point and autoignition temperature in degrees 

Fahrenheit (Celsius in parentheses); flammable limits, in percent by volume 

in air; suitable extinguishing media or materials; special firefighting 

procedures; and unusual fire and explosion hazard information. If the 

product presents no fire hazard, insert "NO FIRE HAZARD" on the line 

labeled-"Extinguishing Media."
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(e) Section V. Health Hazard Information

The "Health Hazard Data" should be a combined estimate of the hazard 

of the total product. This can be expressed as a TWA, as a permissible 

exposure, or by some other indication of an acceptable standard. Other 

data are acceptable, such as lowest LD 50, if multiple components are 

involved.

Under "Routes of Exposure," comments in each category should reflect

the potential hazard from absorption by the route in question. Comments

should indicate the severity of the effect and the basis for the statement

if possible. The basis might be animal studies, analogy with similar 

products, or human experiences. Comments such as "yes" or "possible" are 

not helpful.

"Emergency and First Aid Procedures" should be written in lay 

language and should primarily represent first aid treatment that could be 

provided by paramedical personnel or individuals trained in first aid.

Information in the "Notes to Physician" section should include any 

special medical information which would be of assistance to an attending 

physician including required or recommended preplacement and periodic 

medical examinations, diagnostic procedures, and medical management of 

overexposed workers.

(f) Section VI. Reactivity Data

The comments in this section relate to safe storage and handling of 

hazardous, unstable substances. It is particularly important to highlight 

instability or incompatibility to common substances or circumstances such 

as water, direct sunlight, steel or copper piping, acids, alkalies, etc. 

"Hazardous Decomposition Products" shall include those products released
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under fire conditions. It must also include dangerous products produced by 

aging, such as peroxides in the case of some ethers. Where applicable, 

shelf life should also be indicated.

(g) Section VII. Spill or Leak Procedures

Detailed procedures for cleanup and disposal should be listed with 

emphasis on precautions to be taken to protect workers assigned to cleanup 

detail. Specific neutralizing chemicals or procedures should be described 

in detail. Disposal methods should be explicit including proper labeling 

of containers holding residues and ultimate disposal methods such as 

"sanitary landfill," or "incineration." Warnings such as "comply with 

local, state, and federal antipollution ordinances" are proper but not 

sufficient. Specific procedures shall be identified.

(h) Section VIII. Special Protection Information

This section requires specific information. Statements such as

"Yes," "No," or "If necessary" are not informative. Ventilation

requirements should be specific as to type and preferred methods. 

Respirators shall be specified as to type and joint NIOSH and US Bureau of 

Mines approval class, ie, "Supplied air," "Organic vapor canister,"

"Suitable for dusts not more toxic than lead," etc. Protective equipment 

must be specified as to type and materials of construction.

(i) Section IX. Special Precautions

"Precautionary Statements" shall consist of the label statements 

selected for use on the container or placard. Additional information on

any aspect of safety or health not covered in other sections should be

inserted in this section. The lower block can contain references to 

published guides or in-house procedures for handling and storage.
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Department of Transportation markings and classifications and other 

freight, handling, or storage requirements and environmental controls can 

be noted.

(j) Signature and Filing

Finally, the name and address of the responsible person who completed 

the MSDS and the date of completion are entered. This will facilitate 

correction of errors and identify a source of additional information.

The MSDS shall be filed in a location readily accessible to workers 

potentially exposed to the hazardous material. The MSDS can be used as a 

training aid and basis for discussion during safety meetings and training 

of new employees. It should assist management by directing attention to 

the need for specific control engineering, work practices, and protective 

measures to ensure safe handling and use of the material. It will aid the 

safety and health staff in planning a safe and healthful work environment 

and suggesting appropriate emergency procedures and sources of help in the 

event of harmful exposure of employees.
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MATERIAL SAFETY DATA SHEET
1 PRODUCT IDENTIFICATION

M A N U F A C T U R E R 'S  N A M E
R E G U L A R  TELEPHO NE NO. 
E M E R G E N C Y  T ELEPH O NE  NO.

A D D R E SS

TRADE NAME

SYNONYMS

II HAZARDOUS INGREDIENTS
M A T E R IA L  O R  COMPONENT % H A Z A R D  DATA

III PHYSICAL DATA
BO IL IN G  POINT, 760 M M  HG M E LT IN G  POINT

SPEC IF IC  G R A V IT Y  |H20  = 1I VAPOR PRESSURE

VAPOR DENS ITY  (AIR=1> SO LU B IL IT Y  IN H20, % BY WT.

% VOL AT ILES BY VOL. EVAPO RA T IO N  RATE  (BUTYL A C E T A T E 111

APPEARANCE  A N D  ODOR
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IV FIRE AND EXPLOSION DATA
FLASH POINT 
(TEST METHOD)

AUTOIGNITION
TEMPERATURE

FLAMMABLE LIMITS IN AIR. % BY VOL. LOWER UPPER

EXTINGUISHING
MEDIA

SPECIAL FIRE
FIGHTING
PROCEDURES

UNUSUAL FIRE 
AND EXPLOSION 
HAZARD

V HEALTH HAZARD INFORMATION
HEALTH HAZARD DATA

ROUTES OF EXPOSURE 

INHALATION

SKIN CONTACT

SKIN ABSORPTION

EYE CONTACT

INGESTION

EFFECTS OF OVEREXPOSURE 
ACUTE OVEREXPOSURE

CHRONIC OVEREXPOSURE

EMERGENCY AND FIRST AID PROCEDURES 

EYES:

SKIN:

INHALATION:

INGESTION.

NOTES TO PHYSICIAN
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r
VI REACTIVITY DATA

CONDITIONS CONTRIBUTING TO INSTABILITY

INCOMPA1 iBILITY

HAZARDOUS DECOMPOSITION PRODUCTS

CONDITIONS CONTRIBUTING TO HAZARDOUS POLYMERIZATION

VII SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED 

NEUTRALIZING CHEMICALS

WASTE OISPOSAL METHOD

VIII SPECIAL PROTECTION INFORMATION

VENTILATION REQUIREMENTS

SPECIFIC PERSONAL PROTECTIVE EQUIPMENT 

RESPIRATORY (SPECIFY IN DETAIL)

EYE

GLOVES

OTHER CLOTHING AND EQUIPMENT
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IX SPECIAL PRECAUTIONS
PR EC A U T IO N A R Y
STA TEM EN TS

O TH ER  H A N D L IN G  A N D  
STO RA G E  R EQ U IR E M E N T S

PR EPA R ED  BY:

ADDRESS:

DATE:
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XIII. TABLES AND FIGURE

TABLE XIII-1 

CHEMICAL AND PHYSICAL PROPERTIES OF PHOSGENE

Carbonyl chloride, carbon oxychloride,Synonyms

Chemical formula 

Formula weight 

Boiling point (1 atm)

Freezing point (1 atm)

Density, liquid, 0 C 

Density, gas, 20 C

Specific gravity, gas, 20 C (air = 1) 

Specific gravity, liquid, 19 C/4 C 

Expansion ratio, liquid to gas, 

boiling point to 21 C 

Solubility

Color

Odor

chloroformyl chloride, CG

C0C12

98.9

7.5 C

-127.8 C

1.4187 g/ml

4.39 g/liter

3.4

1.392

1-343

Slightly soluble in water, 

hydrolyzes to hydrochloric acid and 

carbon dioxide. Soluble in carbon 

tetrachloride, chloroform, acetic 

acid, benzene, toluene 

Colorless

Sweet in low concentrations; sharp, 

pungent in higher concentrations 

NonflammableFlammability 
From references 1,2,10,11,12
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TABLE XIII-2 

OCCUPATIONS WITH POTENTIAL EXPOSURE TO PHOSGENE

Chlorinated compound makers

Dyemakers

Firemen

Glass makers

Herbicide makers

Insecticide makers

Isocyanate makers 

Organic chemical synthesizers 

Phosgene workers 

Resin makers

Welders or brazers (near chlorinated 

solvent vapors)

Adapted from Gafafer [15]
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FIGURE XIII-1

C A L IBR A T IO N  SETU P  FOR P E R S O N A L  S A M P L IN G  

P U M P  W ITH  M ID G E T  IM P IN G E R

500

Soap Bubble 
Meter

(inverted buret)

Midget
Impinger

Beaker

Soap
Solution

S s

Tubing

Manometer
(water)

Personal 
Sampling Pump
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